ﻻ يوجد ملخص باللغة العربية
As a step toward investigating the parsec-scale properties of faint extragalactic radio sources, the Very Long Baseline Array (VLBA) was used at 5.0 GHz to obtain phase-referenced images of 76 sources in the NOAO Bootes field. These 76 sources were selected from the FIRST catalog to have peak flux densities above 10 mJy at 5 arcsec resolution and deconvolved major diameters of less than 3 arcsec at 1.4 GHz. Fifty-seven of these faint radio sources were identified with accretion-powered radio galaxies and quasars brighter than 25.5 mag in the optical I band. On VLA scales at 1.4 GHz, a measure of the compactness of the faint sources (the ratio of the peak flux density from FIRST to the integrated flux density from the NVSS catalog) spans the full range of possibilites arising from source-resolution effects. Thirty of the faint radio sources, or 39 +9/-7%, were detected with the VLBA at 5.0 GHz with peak flux densities above 6 sigma ~2 mJy at 2 mas resolution. The VLBA detections occur through the full range of compactness ratios. The stronger VLBA detections can themselves serve as phase-reference calibrators, boding well for opening up much of the radio sky to VLBA imaging. For the adopted cosmology, the VLBA resolution correponds to 17 pc or finer. Most VLBA detections are unresolved or slightly resolved but one is diffuse and five show either double or core-jet structures; the properties of these latter six are discussed in detail. Three VLBA detections are unidentified and fainter than 25.5 mag in the optical I band; their properties are highlighted because they likely mark optically-obscured active nuclei at high redshift.
In this article we present deep, high-resolution radio interferometric observations at 153 MHz to complement the extensively studied NOAO Bootes field. We provide a description of the observations, data reduction and source catalog construction. From
We study the faint radio population using wide-field very long baseline interferometry (VLBI) observations of 2865 known radio sources in the Cosmic Evolution Survey (COSMOS) field. The main objective of the project was to determine where active gala
We describe deep radio imaging at 1.4-GHz of the 1.3 square degree Subaru/XMM-Newton Deep Field (SXDF), made with the Very Large Array in B and C configurations. We present a radio map of the entire field, and a catalogue of 505 sources covering 0.8
It has been speculated that low luminosity radio-loud AGN have the potential to serve as an important source of AGN feedback, and may be responsible for suppressing star-formation activity in massive elliptical galaxies at late times. As such the cos
We present deep Hubble Space Telescope NICMOS near-infrared and WFPC2 optical imaging of a small region in the core of the distant rich cluster Cl0939+4713 (z=0.41). We compare the optical and near-infrared morphologies of cluster members and find ap