ترغب بنشر مسار تعليمي؟ اضغط هنا

The radial velocity dispersion profile of the Galactic halo: Constraining the density profile of the dark halo of the Milky Way

144   0   0.0 ( 0 )
 نشر من قبل Giuseppina Battaglia
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف G. Battaglia




اسأل ChatGPT حول البحث

We have compiled a new sample of 240 halo objects with accurate distance and radial velocity measurements, including globular clusters, satellite galaxies, field blue horizontal branch stars and red giant stars from the Spaghetti survey. The new data lead to a significant increase in the number of known objects for Galactocentric radii beyond 50 kpc, which allows a reliable determination of the radial velocity dispersion profile out to very large distances. The radial velocity dispersion shows an almost constant value of 120 km/s out to 30 kpc and then continuously declines down to 50 km/s at about 120 kpc. This fall-off puts important constraints on the density profile and total mass of the dark matter halo of the Milky Way. For a constant velocity anisotropy, the isothermal profile is ruled out, while both a dark halo following a truncated flat model of mass $1.2^{+1.8}_{-0.5}times 10^{12}$ M_sun and an NFW profile of mass $0.8^{+1.2}_{-0.2}times 10^{12}$ M_sun and c=18 are consistent with the data. The significant increase in the number of tracers combined with the large extent of the region probed by these has allowed a more precise determination of the Milky Way mass in comparison to previous works. We also show how different assumptions for the velocity anisotropy affect the performance of the mass models.



قيم البحث

اقرأ أيضاً

124 - Warren R. Brown 2009
We present a spectroscopic sample of 910 distant halo stars from the Hypervelocity Star survey from which we derive the velocity dispersion profile of the Milky Way halo. The sample is a mix of 74% evolved horizontal branch stars and 26% blue straggl ers. We estimate distances to the stars using observed colors, metallicities, and stellar evolution tracks. Our sample contains twice as many objects with R>50 kpc as previous surveys. We compute the velocity dispersion profile in two ways: with a parametric method based on a Milky Way potential model, and with a non-parametric method based on the caustic technique originally developed to measure galaxy cluster mass profiles. The resulting velocity dispersion profiles are remarkably consistent with those found by two independent surveys based on other stellar populations: the Milky Way halo exhibits a mean decline in radial velocity dispersion of -0.38+-0.12 km/s/kpc over 15<R<75 kpc. This measurement is a useful basis for calculating the total mass and mass distribution of the Milky Way halo.
We report a detection of 3.5 keV line in the Milky Way in 5 regions offset from the Galactic Center by distances from 10 to 35 degrees. We build an angular profile of this line and compare it with profiles of several astrophysical lines detected in t he same observations. We compare our results with other detections and bounds previously obtained using observations of the Milky Way.
105 - Nicolas Bernal 2011
We study the abilities of the Fermi-LAT instrument on board of the Fermi mission to simultaneously constrain the Milky Way dark matter density profile and some dark matter particle properties, as annihilation cross section, mass and branching ratio i nto dominant annihilation channels. A single dark matter density profile is commonly assumed to determine the capabilities of gamma-ray experiments to extract dark matter properties or to set limits on them. However, our knowledge of the Milky Way halo is far from perfect, and thus in general, the obtained results are too optimistic. Here, we study the effect these astrophysical uncertainties would have on the determination of dark matter particle properties and conversely, we show how gamma-ray searches could also be used to learn about the structure of the Milky Way halo, as a complementary tool to other type of observational data that study the gravitational effect caused by the presence of dark matter. In addition, we also show how these results would improve if external information on the annihilation cross section and on the local dark matter density were included and compare our results with the predictions from numerical simulations.
The cold dark matter (CDM) cosmology, which is the standard theory of the structure formation in the universe, predicts that the outer density profile of dark matter halos decreases with the cube of distance from the center. However, so far not much effort has examined this hypothesis. In the halo of the Andromeda galaxy (M31), large-scale stellar structures detected by the recent observations provide a potentially suitable window to investigate the mass--density distribution of the dark matter halo. We explore the density structure of the dark matter halo in M31 using an N-body simulation of the interaction between an accreting satellite galaxy and M31. To reproduce the Andromeda Giant Southern Stream and the stellar shells at the east and west sides of M31, we find the sufficient condition for the power-law index $alpha$ of the outer density distribution of the dark matter halo. The best-fit parameter is $alpha=-3.7$, which is steeper than the CDM prediction.
Large-scale faint structure detected by the recent observations in the halo of the Andromeda galaxy (M31) provides an attractive window to explore the structure of outer cold dark matter (CDM) halo in M31. Using an N-body simulation of the interactio n between an accreting satellite galaxy and M31, we investigate the mass density profile of the CDM halo. We find the sufficient condition of the outer density profile of CDM halo in M31 to reproduce the Andromeda giant stream and the shells at the east and west sides of M31. The result indicates that the density profile of the outer dark matter halo of M31 is a steeper than the prediction of the theory of the structure formation based on the CDM model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا