ترغب بنشر مسار تعليمي؟ اضغط هنا

New Low Accretion-Rate Magnetic Binary Systems and their Significance for the Evolution of Cataclysmic Variables

73   0   0.0 ( 0 )
 نشر من قبل Gary D. Schmidt
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Discoveries of two new white dwarf plus M star binaries with striking optical cyclotron emission features from the Sloan Digital Sky Survey (SDSS) brings to six the total number of X-ray faint, magnetic accretion binaries that accrete at rates < 10^{-13} Msun/yr, or <1% of the values normally encountered in cataclysmic variables. This fact, coupled with donor stars that underfill their Roche lobes and very cool white dwarfs, brand the binaries as post common-envelope systems whose orbits have not yet decayed to the point of Roche-lobe contact. They are pre-magnetic CVs, or pre-Polars. The systems exhibit spin/orbit synchronism and apparently accrete by efficient capture of the stellar wind from the secondary star, a process that has been dubbed a ``magnetic siphon. Because of this, period evolution of the binaries will occur solely by gravitational radiation, which is very slow for periods >3 hr. Optical surveys for the cyclotron harmonics appear to be the only means of discovery, so the space density of pre-Polars could rival that of Polars, and the binaries provide an important channel of progenitors (in addition to the asynchronous Intermediate Polars). Both physical and SDSS observational selection effects are identified that may help to explain the clumping of all six systems in a narrow range of magnetic field strength around 60 MG.

قيم البحث

اقرأ أيضاً

183 - A.J. Norton 2007
We have used a model of magnetic accretion to investigate the accretion flows of magnetic cataclysmic variables. Numerical simulations demonstrate that four types of flow are possible: discs, streams, rings and propellers. The fundamental observable determining the accretion flow, for a given mass ratio, is the spin-to-orbital period ratio of the system. If IPs are accreting at their equilibrium spin rates, then for a mass ratio of 0.5, those with Pspin/Porb < 0.1 will be disc-like, those with 0.1 < Pspin/Porb < 0.6 will be stream-like, and those with Pspin/Porb ~ 0.6 will be ring-like. The spin to orbital period ratio at which the systems transition between these flow types increases as the mass ratio of the stellar components decreases. For the first time we present evolutionary tracks of mCVs which allow investigation of how their accretion flow changes with time. As systems evolve to shorter orbital periods and smaller mass ratios, in order to maintain spin equilibrium, their spin-to-orbital period ratio will generally increase. As a result, the relative occurrence of ring-like flows will increase, and the occurrence of disc-like flows will decrease, at short orbital periods. The growing number of systems observed at high spin-to-orbital period ratios with orbital periods below 2h, and the observational evidence for ring-like accretion in EX Hya, are fully consistent with this picture.
184 - K. Beuermann 2003
The structure of the near-polar accretion spots on accreting magnetic white dwarfs has been studied theoretically and observationally in numerous papers over the last decade. Detailed treatments are available for the regime of low mass flux, usually termed the bombardment case, and for higher mass fluxes which create a strong shock standing above the photosphere of the white dwarf. No general treatment is so far available for the case of shocks buried deep in the photosphere. I review the theoretical foundations, present some applications of theory, and discuss in short the open questions which still need to be addressed.
109 - Christian Knigge 2011
I review our current understanding of the evolution of cataclysmic variables (CVs). I first provide a brief introductory CV primer, in which I describe the physical structure of CVs, as well as their astrophysical significance. The main part of the r eview is divided into three parts. The first part outlines the theoretical principles of CV evolution, focusing specifically on the standard disrupted magnetic braking model. The second part describes how some of the most fundamental predictions this model are at last being test observationally. Finally, the third part describes recent efforts to actually reconstruct the evolution path of CVs empirically. Some of these efforts suggest that angular momentum loss below the period gap must be enhanced relative to the purely gravitational-radiation-driven losses assumed in the standard model.
99 - Kinwah Wu , Mark Cropper 2001
Using a parameterised function for the mass loss at the base of the post-shock region, we have constructed a formulation for magnetically confined accretion flows which avoids singularities, such as the infinity in density, at the base associated wit h all previous formulations. With the further inclusion of a term allowing for the heat input into the base from the accreting white dwarf we are able also to obtain the hydrodynamic variables to match the conditions in the stellar atmosphere. (We do not, however, carry out a mutually consistent analysis for the match). Changes to the emitted X-ray spectra are negligible unless the thickness of mass leakage region at the base approaches or exceeds one percent of the height of the post-shock region. In this case the predicted spectra from higher-mass white dwarfs will be harder, and fits to X-ray data will predict lower white-dwarf masses than previous formulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا