ترغب بنشر مسار تعليمي؟ اضغط هنا

The Filamentary Large Scale Structure around the z = 2.16 Radio Galaxy PKS 1138-262

141   0   0.0 ( 0 )
 نشر من قبل Steve Croft
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Steve Croft




اسأل ChatGPT حول البحث

PKS 1138-262 is a massive radio galaxy at z = 2.16 surrounded by overdensities of Lya emitters, Ha emitters, EROs and X-ray emitters. Numerous lines of evidence exist that it is located in a forming cluster. We report on Keck spectroscopy of candidate members of this protocluster, including nine of the 18 X-ray sources detected by Pentericci et al. (2002) in this field. Two of these X-ray sources (not counting PKS 1138-262 itself) were previously confirmed to be members of the protocluster; we have discovered that an additional two (both AGN) are members of a filamentary structure, at least 3.5 Mpc in projection, aligned with the radio jet axis, the 150 kpc-sized emission-line halo, and the extended X-ray emission around the radio galaxy. Three of the nine X-ray sources observed are lower redshift AGN, and three are M-dwarf stars.

قيم البحث

اقرأ أيضاً

We present results from a Chandra X-ray Observatory study of the field X-ray source population in the vicinity of the radio galaxy MRC 1138-262. Many serendipitous X-ray sources are detected in an area of 8x8 around the radio source and 90% are ident ified in our deep VLT images. The space density of such sources is higher than expected on the basis of the statistics of ROSAT and Chandra deep surveys. The most likely explanation is in terms of a concentration of AGN associated with the protocluster at z=2.16 which was found around the radio galaxy in previous studies. Two sources have a confirmed spectroscopic redshift close to that of the radio galaxy, and for three more sources other observations suggest that they are associated with the protocluster. Four of these five X-ray sources form, together with the radio galaxy, a filament in the plane of the sky. The direction of the filament is similar to that of the radio source axis, the large scale distribution of the other protocluster members, the 150 kpc-sized emission-line halo and the extended X-ray emission associated with the radio galaxy. The majority of optically identified X-ray sources in this field have properties consistent with type I AGN, a few could be soft, low luminosity galaxies, one is probably an obscured (type II) AGN and one is a star. These statistics are consistent with the results of deep X-ray surveys.
We have recently discovered a forming cluster around the radio galaxy MRC 1138-262 at redshift 2.2. Besides the population of Ly alpha emitting galaxies that have been confirmed spectroscopically, we have detected many candidate H alpha emitters that seem to have a different spatial distribution from the other galaxies: they are more clustered towards the center of the cluster and seem to be distributed along the same direction as the radio source. We present here the characteristics of the Ly alpha and H alpha emitters and study the nature of these populations.
We report the discovery of a large-scale coherent filamentary structure of Lyman alpha emitters in a redshift space at z=3.1. We carried out spectroscopic observations to map the three dimensional structure of the belt-like feature of the Lyman alpha emitters discovered by our previous narrow-band imaging observations centered on the protocluster at z=3.1. The feature was found to consist of at least three physical filaments connecting with each other. The result is in qualitative agreement with the prediction of the biased galaxy-formation theories that galaxies preferentially formed in large-scale filamentary or sheet-like mass overdensities in the early Universe. We also found that the two known giant Lyman alpha emission-line nebulae showing high star-formation activities are located near the intersection of these filaments, which presumably evolves into a massive cluster of galaxies in the local Universe. This may suggest that massive galaxy formation occurs at the characteristic place in the surrounding large-scale structure at high redshift.
We present broad-band imaging with the Subaru Telescope of a 25x25 field surrounding the radio galaxy TN J1338-1942 at redshift z=4.1. The field contains excesses of Lyman-alpha emitters (LAEs) and Lyman break galaxies (LBGs) identified with a protoc luster surrounding the radio galaxy. Our new wide-field images provide information about the boundary of the protocluster and its surroundings. There are 874 candidate LBGs within our field, having redshifts in the range z=3.5-4.5. An examination of the brightest of these (with i< 25.0) shows that the most prominent concentration coincides with the previously discovered protocluster. The diameter of this galaxy overdensity corresponds to ~2 Mpc at z=4, consistent with the previous estimation using LAEs. Several other concentrations of LBGs are observed in the field, some of which may well be physically connected with the z=4.1 protocluster. The observed structure in the smoothed LBG distribution can be explained as the projection of large-scale structure, within the redshift range z=3.5-4.5, comprising compact overdensities and prominent larger voids. If the 5-8 observed compact overdensities are associated with protoclusters, the observed protocluster volume density is ~5x10^-6 Mpc^-3, similar to the volume density of rich clusters in the local Universe.
271 - R. Morganti 2002
We present WSRT and VLA radio observations of the neutral hydrogen in the radio galaxy Coma A. We detect extended HI absorption against both radio lobes of Coma A, at distances of about 30 kpc from the centre. Coma A is the first radio galaxy in whic h HI is seen in absorption at such large distances from the nucleus. The match between the velocities of the neutral hydrogen and those of the extended ionized gas suggests that they are part of the same disk-like structure of at least 60 kpc in diameter. Most likely, this gas disk is partly ionised by the bulk motion of the radio lobes expanding into it. The gas mass of this disk is at least 10^9 Msun. The relatively regular structure of the gas disk suggests that a merger occurred involving at least one large gas-rich galaxy, at least a few times 10^8 yr ago.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا