ترغب بنشر مسار تعليمي؟ اضغط هنا

VLT-FORS1 Imaging Polarimetry of M83 (NGC 5236) - I. Search for Light Echoes from Historical Supernovae

445   0   0.0 ( 0 )
 نشر من قبل Martino Romaniello
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have used FORS1 at the ESO VLT to search for light echoes in imaging polarimetry from four historical supernovae in the face-on nearby spiral galaxy M83 (NGC 5236). No echoes were detected around our targets (SN 1923A, SN 1945B, SN 1950B and SN 1957D). This implies that the interstellar medium in their environs is rather tenuous (a few particles/cm^3), possibly as a result of previous supernova explosions that could have cleared the immediate vicinities of our targets. The merits and limitations of searching for light echoes in imaging polarimetry are discussed. From the photometry of the sources detected at the supernova locations, we estimate star cluster masses of 720, 400, 300 Mo for the cluster progenitors of SN 1957D, SN 1923A, and SN 1950B, respectively, and an upper limit of few tens of solar masses for SN 1945B.

قيم البحث

اقرأ أيضاً

101 - G. Andreuzzi 2002
We present VLT (FORS1) photometry of the lower main sequence (MS) of the Galactic Globular Cluster (GGC) NGC 6397, for stars located in 2 fields extending from a region near the cluster center out to ~ 10. The obtained CMD shows a narrow MS extending down to V ~ 27 (figure c), much deeper than any previous ground based study and comparable with previous HST photometry (Cool et al. 1996). The comparison between observed MS Luminosity Functions (LFs) derived for 2 annuli at different radial distance from the center of the cluster shows a clear-cut correlation between their slope before reaching the turn-over, and the radial position of the observed fields inside the cluster area: the LFs become flatter with decreasing radius, a trend that is consistent with the interpretation of NGC 6397 as a dynamically relaxed system.
We present integrated-light spectra of 8 Young Massive Clusters (YMCs) in the metal-rich spiral galaxy NGC 5236 (M 83). The observations were taken with the X-Shooter spectrograph on the ESO Very Large Telescope. Through the use of theoretical isochr ones and synthetic integrated-light (IL) spectra we derive metallicities and study the radial metallicity gradient observed through these young populations. For the inner regions of the galaxy we observe a relatively shallow metallicity gradient of $-$0.37 $pm$0.29 dex R$_{25}^{-1}$, agreeing with chemical evolution models with an absence of infall material and a relatively low mass loss due to winds in the inner parts of the disk. We estimate a central metallicity of [$Z$] = $+$0.17 $pm$ 0.12 dex, finding excellent agreement with that obtained via other methods (e.g. blue supergiants and J-band). We infer a metallicity of 12+log(O/H) = 8.75 $pm$ 0.08 dex at R/R$_{25}$ = 0.4, which fits the stellar mass-metallicity relation (MZR) compilation of blue supergiants and IL studies.
We report the discovery of an extensive system of scattered light echo arclets associated with the recent supernovae in the local neighbourhood of the Milky Way: Tycho (SN 1572) and Cassiopeia A. Existing work suggests that the Tycho SN was a thermon uclear explosion while the Cas A supernova was a core collapse explosion. Precise classifications according to modern nomenclature require spectra of the outburst light. In the case of ancient SNe, this can only be done with spectroscopy of their light echo, where the discovery of the light echoes from the outburst light is the first step. Adjacent light echo positions suggest that Cas A and Tycho may share common scattering dust structures. If so, it is possible to measure precise distances between historical Galactic supernovae. On-going surveys that alert on the development of bright scattered-light echo features have the potential to reveal detailed spectroscopic information for many recent Galactic supernovae, both directly visible and obscured by dust in the Galactic plane.
We report the results of 15 years of radio observations of the six historical supernovae (SNe) in M83 using the Very Large Array. We note the near linear decline in radio emission from SN 1957D, a type II SN, which remains a non-thermal radio emitter . The measured flux densities from SNe 1923A and 1950B have flattened as they begin to fade below detectable limits, also type II SNe. The luminosities for these three SNe are comparable with the radio luminosities of other decades-old SNe at similar epochs. SNe 1945B, 1968L, and 1983N were not detected in the most recent observations and these non-detections are consistent with previous studies. We report the X-ray non-detections of all six historical SNe using the Chandra X-ray Observatory, consistent with previous X-ray searches of other decades-old SNe, and low inferred mass loss rates of the progenitors.
157 - Naoki Seto 2021
We study an interstellar signaling scheme which was originally proposed by Seto (2019) and efficiently links intentional transmitters to ETI searchers through a conspicuous astronomical burst, without prior communication. Based on the geometrical and game theoretic viewpoints, the scheme can be refined so that intentional signals can be sent and received after observing a reference burst, in contrast to the original proposal (before observing a burst). Given this inverted temporal structure, Galactic supernovae recorded in the past 2000 years can be regarded as interesting guideposts for an ETI search. While the best use period of SN 393 has presumably passed $sim$100 years ago, some of the historical supernovae might allow us to compactify the ETI survey regions down to less than one present of $4pi$, around two rings in the sky.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا