ترغب بنشر مسار تعليمي؟ اضغط هنا

A deep survey of brown dwarfs in Orion with Gemini

81   0   0.0 ( 0 )
 نشر من قبل Philip Lucas
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the results of a deep near infrared (JHK) survey of the outer parts of the Trapezium Cluster with Gemini South/Flamingos. 396 sources were detected in a 26 arcmin^2 area, including 138 brown dwarf candidates, defined as M<0.075 Msun for an assumed age of 1 Myr. Only 33 of the brown dwarf candidates are planetary mass candidates (PMCs) with estimated masses in the range 0.003<M<0.012Msun. In an extinction limited sample (A(V)<5) complete to approximately 0.005 Msun (5 Mjup) the mass function appears to drop by a factor of 2 at the deuterium burning threshold, i.e. at planetary masses. After allowing for background contamination it is likely that planetary mass objects at 3-13 Mjup number <10% of the cluster population, with an upper limit of 13%. Analysis of the spatial distribution of stars and brown dwarf candidates suggests that brown dwarfs and very low mass stars (M<0.1 Msun) are less likely than more massive stars to have wide (>150 AU) binary companions. This result has modest statistical significance (96%) in our data but is supported at 93% confidence by analysis of an completely independent sample taken from the Subaru data of Kaifu et al.(2000). There is a statistically very significant excess of both stars and brown dwarfs with small separations from each other (<6 arcsec or 2600 AU). This appears to be due to the presence of small N subgroups, which are likely to be dynamically unstable in the long term. Hence these results are consistent with the ejected stellar embryo hypothesis for brown dwarf formation (Reipurth & Clarke 2001). We also report the discovery of two new bipolar nebulae, which are interpreted as Class I protostars.



قيم البحث

اقرأ أيضاً

123 - P. W. Lucas 2006
We report the results of near infrared spectroscopy of 11 luminosity selected candidate planetary mass objects (PMOs) in the Trapezium Cluster with Gemini South/GNIRS and Gemini North/NIRI. 6 have spectral types >=M9, in agreement with expectations f or PMOs. 2 have slightly earlier types, and 3 are much earlier types which are probably field stars. 4/6 sources with types >= M9 have pseudo-continuum profiles which confirm them as low gravity cluster members. The gravity status of the other cool dwarfs is less clear but these remain candidate PMOs. The derived number fraction of PMOs with M=3-15 Mjup is 1-14%, these broad limits reflecting the uncertainty in source ages. However, the number fraction with M<20 Mjup is at least 5%. These detections add significantly to the body of evidence that a planetary mass population is produced by the star formation process.
We describe the results of a very deep imaging survey of the Trapezium Cluster in the IJH bands, using the UKIRT high resolution camera UFTI. Approximately 32% of the 515 point sources detected are brown dwarf candidates, including several free float ing objects with masses below the Deuterium burning (planetary) threshold at 0.013 solar masses, which are detectable because of their extreme youth. We have confidence that almost all the sources detected are cluster members, since foreground contamination is minimal in the 33 arcmin^2 area surveyed and the dense backdrop of OMC-1 obscures all background stars at these wavelengths. Extinction is calculated from the (J-H)colours, permitting accurate luminosity estimates and temperatures are derived from the dereddened (I-J) colours. There is some evidence for a cut-off in the luminosity function below the level corresponding to several Jupiter masses, which may represent the bottom end of the IMF. Since star formation is complete in the Trapezium this limit could have wide significance, if confirmed. However, it could well be an effect of the dispersal of the molecular cloud by the central O-type stars, a process whose timescale will vary between star formation regions.
273 - N. Lodieu 2009
We present the discovery of two brown dwarfs in the UKIRT Infrared Deep Sky Survey (UKIDSS) Deep Extragalactic Survey (DXS) Data Release 2. Both objects were selected photometrically from six square degrees in DXS for their blue J-K colour and the la ck of optical counterparts in the Sloan Digital Sky Survey (SDSS) Stripe 82. Additional optical photometry provided by the Canada-France-Hawaii Telescope Legacy Survey (CFHT-LS) corroborated the possible substellarity of these candidates. Subsequent methane imaging of UDXS J221611.51+003308.1 and UDXS J221903.10+002418.2, has confirmed them as T7$pm$1 and T6$pm$1 dwarfs at photometric distances of 81 (52-118 pc) and 60 (44-87 pc; 2 sigma confidence level). A similar search in the second data release of the Ultra Deep Survey over a smaller area (0.77 square degree) and shallower depth didnt return any late-T dwarf candidate. The numbers of late-T dwarfs in our study are broadly in line with a declining mass function when considering the current area and depth of the DXS and UDS. These brown dwarfs are the first discovered in the VIMOS 4 field and among the few T dwarfs found in pencil-beam surveys. They are valuable to investigate the scale height of T dwarfs.
The Vista Variables in the Via Lactea survey (VVV) is a near-IR ESO public survey devoted to study the Galactic bulge and southern inner disk covering 560 deg$^2$ on the sky. This multi-epoch and multi-wavelength survey has helped to discover the fir st brown dwarfs towards the Galactic center, one of the most crowded areas in the sky, and several low mass companions to known nearby stars. The multi-epoch information has allowed us to calculate precise parallaxes, and put some constraints on the long-term variability of these objects. We expect to discover above a hundred more brown dwarfs. The VVV survey makes a great synergy with the Gaia mission, as both will observe for a few years the same fields at different wavelengths, and as VVV is more sensitive to very red objects such as brown dwarfs, VVV might provide unique candidates to follow up eventual astrometric microlensing events thank to the exquisite astrometric precision of the Gaia mission.
Forty new low mass members with spectral types ranging from M4-M9 have been confirmed in the Orion Molecular Cloud 2/3 region. Through deep, I, z, J, H, K photometry of a 20 x 20 field in OMC 2/3, we selected brown dwarf candidates for follow-up spec troscopy. Low resolution far-red and near-infrared spectra were obtained for the candidates, and 19 young brown dwarfs in the OMC 2/3 region are confirmed. They exhibit spectral types of M6.5-M9, corresponding to approximate masses of 0.075-0.015 M_solar using the evolutionary models of Baraffe et al. (1998). At least one of these bona fide young brown dwarfs has strong Halpha emission, indicating that it is actively accreting. In addition, we confirm 21 new low mass members with spectral types of M4-M6, corresponding to approximate masses of 0.35-0.10 M_solar in OMC 2/3. By comparing pre-main sequence tracks to the positions of the members in the H-R diagram, we find that most of the brown dwarfs are less than 1 Myr, but find a number of low mass stars with inferred ages greater than 3 Myr. The discrepancy in the stellar and substellar ages is due to our selection of only low luminosity sources; however, the presence of such objects implies the presence of an age spread in the OMC 2/3 region. We discuss possible reasons for this apparent age spread.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا