ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-linear perturbations in multiple-field inflation

94   0   0.0 ( 0 )
 نشر من قبل Bartjan van Tent
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a non-linear framework for describing long-wavelength perturbations in multiple-field inflation. The basic variables describing inhomogeneities are defined in a non-perturbative manner, are invariant under changes of time slicing on large scales and include both matter and metric perturbations. They are combinations of spatial gradients generalising the gauge-invariant variables of linear theory. Dynamical equations are derived and supplemented with stochastic source terms which provide the long-wavelength initial conditions determined from short-wavelength modes. Solutions can be readily obtained via numerical simulations or analytic perturbative expansions. The latter are much simpler than the usual second-order perturbation theory. Applications are given in a companion paper.



قيم البحث

اقرأ أيضاً

Isocurvature perturbations naturally occur in models of inflation consisting of more than one scalar field. In this paper we calculate the spectrum of isocurvature perturbations generated at the end of inflation for three different inflationary model s consisting of two canonical scalar fields. The amount of non-adiabatic pressure present at the end of inflation can have observational consequences through the generation of vorticity and subsequently the sourcing of B-mode polarisation. We compare two different definitions of isocurvature perturbations and show how these quantities evolve in different ways during inflation. Our results are calculated using the open source Pyflation numerical package which is available to download.
Non-adiabatic pressure perturbations naturally occur in models of inflation consisting of more than one scalar field. The amount of non-adiabatic pressure present at the end of inflation can have observational consequences through changes in the curv ature perturbation, the generation of vorticity and subsequently the sourcing of B-mode polarisation. In this work, based on a presentation at the 13th Marcel Grossmann Meeting, we give a very brief overview of non-adiabatic pressure perturbations in multi-field inflationary models and describe our recent calculation of the spectrum of isocurvature perturbations generated at the end of inflation for different models which have two scalar fields.
We consider a model of inflation consisting a triplet of $U(1)$ vector fields with the parity violating interaction which is non-minimally coupled to inflaton. The vector field sector enjoys global $O(3)$ symmetry which admits isotropic configuration and provides not only vector modes but also scalar and tensor modes. We decompose the scalar perturbations into the adiabatic, entropy and isocurvature perturbations and compute all power spectra and cross correlations of the scalar and the tensor sectors. The tensor modes associated with the vector fields contribute to the power spectrum of gravitational waves while the parity violating term generates chirality in gravitational power spectra and bispectra. We study nonlinear scalar and tensor perturbations and compute all bispectra and three-point cross-correlations. In particular, it is shown that the non-Gaussianity of curvature perturbations and gravitational waves are enhanced by the vector field perturbations. We show that non-Gaussianities put strong constraints on the model parameters such as the parity violating coupling and the fractional energy of the vector fields.
Multiple inflation is a model based on N=1 supergravity wherein there are sudden changes in the mass of the inflaton because it couples to flat direction scalar fields which undergo symmetry breaking phase transitions as the universe cools. The resul ting brief violations of slow-roll evolution generate a non-gaussian signal which we find to be oscillatory and yielding f_NL ~ 5-20. This is potentially detectable by e.g. Planck but would require new bispectrum estimators to do so. We also derive a model-independent result relating the period of oscillations of a phase transition during inflation to the period of oscillations in the primordial curvature perturbation generated by the inflaton.
We investigate non-Gaussianity in general multiple-field inflation using the formalism we developed in earlier papers. We use a perturbative expansion of the non-linear equations to calculate the three-point correlator of the curvature perturbation a nalytically. We derive a general expression that involves only a time integral over background and linear perturbation quantities. We work out this expression explicitly for the two-field slow-roll case, and find that non-Gaussianity can be orders of magnitude larger than in the single-field case. In particular, the bispectrum divided by the square of the power spectrum can easily be of O(1-10), depending on the model. Our result also shows the explicit momentum dependence of the bispectrum. This conclusion of large non-Gaussianity is confirmed in a semi-analytic slow-roll investigation of a simple quadratic two-field model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا