ترغب بنشر مسار تعليمي؟ اضغط هنا

The Galex Ultraviolet Variability (GUVV) Catalog

48   0   0.0 ( 0 )
 نشر من قبل Jonathan Wheatley
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present Version 1.0 of the NASA Galaxy Evolution Explorer (GALEX) ultraviolet variability catalog (GUVV) that contains information on 84 time-variable and transient sources gained with simultaneous near and far ultraviolet photometric observations. These time-variable sources were serendipitously revealed in the various 1.2 degree star fields currently being surveyed by the GALEX satellite in two ultraviolet bands (NUV 1750-2750A, FUV 1350-1750A) with limiting AB magnitudes of 23-25. The largest-amplitude variable objects presently detected by GALEX are M-dwarf flare stars, which can brighten by 5-10 mag in both the NUV and FUV bands during short duration (< 500s) outbursts. Other types of large-amplitude ultraviolet variable objects include ab-type RR Lyrae stars, which can vary periodically by 2-5mag in the GALEX FUV band. This first GUVV catalog lists galactic positions and possible source identifications in order to provide the astronomical community with a list of time-variable objects that can now be repeatedly observed at other wavelengths. We expect the total number of time-variable source detections to increase as the GALEX mission progresses, such that later version numbers of the GUVV catalog will contain substantially more variable sources.



قيم البحث

اقرأ أيضاً

We present GALEX near ultraviolet (NUV:1750 - 2750A) and far ultraviolet (FUV: 1350 - 1750A) imaging observations of two 1.2 degree diameter fields in the Hyades and Pleiades open clusters in order to detect possible UV variability of the member star s. We have performed a detailed software search for short-term UV flux variability during these observations of the approx 400 sources detected in each of the Hyades and Pleiades fields to identify flare-like (dMe) stellar objects. This search resulted in the detection of 16 UV variable sources, of which 13 can be directly associated with probable M-type stars. The other UV sources are G-type stars and one newly discovered RR Lyrae star, USNOB1.0 1069-0046050, of period 0.624 day and distance 4.5-7.0 kpc. Light curves of photon flux versus time are shown for 7 flare events recorded on six probable dMe stars. UV energies for these flares span the range 2E27 to 5E29 erg, with a corresponding NUV variability change of 1.82 mag. Only one of these flare events (on the star Cl* Melotte 25 LH129) can definitely be associated with an origin on a member the Hyades cluster itself. Finally, many of our M-type candidates show long periods of enhanced UV activity but without the associated rapid increase in flux that is normally associated with a flare event. However, the total UV energy output during such periods of increased activity is greater than that of many short-term UV flares. These intervals of enhanced low-level UV activity concur with the idea that, even in quiescence, the UV emission from dMe stars may be related to a superposition of many small flare events possessing a wide range of energies.
We present ultraviolet (UV) photometry of M31 globular clusters (GCs) found in 23 Galaxy Evolution Explorer (GALEX) images covering the entirety of M31. We detect 485 and 273 GCs (and GC candidates) in the near-ultraviolet (NUV; 2267 A) and far-ultra violet (FUV; 1516 A), respectively. Comparing M31 data with those of Galactic GCs in the UV with the aid of population models, we find that the age ranges of old GCs in M31 and the Galactic halo are similar. Three metal-rich ([Fe/H]>-1) GCs in M31 produce significant FUV flux making their FUV-V colors unusually blue for their metallicities. These are thought to be analogs of the two peculiar Galactic GCs NGC 6388 and NGC 6441 with extended blue HB stars. Based on the models incorporating helium enriched subpopulations in addition to the majority of the population that have a normal helium abundance, we suggest that even small fraction of super-helium-rich subpopulations in GCs can reproduce the observed UV bright metal-rich GCs. Young clusters in M31 show distinct UV and optical properties from GCs in Milky Way. Population models indicate that their typical age is less than ~ 2 Gyrs. A large fraction of young GCs have the kinematics of the thin, rapidly rotating disk component. However, a subset of the old GCs also shares the thin-disk kinematics of the younger clusters. The existence of young GCs on the outskirts of M31 disk suggests the occurrence of a significant recent star formation in the thin-disk of M31. Old thin-disk GCs may set constraints on the epoch of early formation of the M31 thin-disk. We detect 12 (10) intermediate-age GC candidates in NUV (FUV). We suggest that some of spectroscopically identified intermediate-age GCs may not be truly intermediate in age, but rather older GCs that possess developed HB.
The Galaxy Evolution Exporer (GALEX) has performed unprecedented imaging surveys of the Magellanic Clouds (MC) and their surrounding areas including the Magellanic Bridge (MB) in near-UV (NUV, 1771-2831AA) and far-UV (FUV, 1344-1786AA) bands at 5 res olution. Substantially more area was covered in the NUV than FUV, particularly in the bright central regions, because of the GALEX FUV detector failure. The 5$sigma$ depth of the NUV imaging varies between 20.8 and 22.7 (ABmag). Such imaging provides the first sensitive view of the entire content of hot stars in the Magellanic System, revealing the presence of young populations even in sites with extremely low star-formation rate surface density like the MB, owing to high sensitivity of the UV data to hot stars and the dark sky at these wavelengths. The density of UV sources is quite high in many areas of the LMC and SMC. Crowding limits the quality of source detection and photometry from the standard mission pipeline processing. We performed custom-photometry of the GALEX data in the MC survey region ($<15^{circ}$ from the LMC, $<10^{circ}$ from the SMC). After merging multiple detections of sources in overlapping images, the resulting catalog we have produced for the LMC contains nearly 6 million unique NUV point sources within 15$^{circ}$ and is briefly presented herein. This paper provides a first look at the GALEX MC survey and highlights some of the science investigations that the entire catalog and imaging dataset will make possible.
303 - Mingxu Sun , B. W. Jiang , He Zhao 2018
Interstellar extinction in ultraviolet is the most severe in comparison with optical and infrared wavebands and a precise determination plays an important role in correctly recovering the ultraviolet brightness and colors of objects. By finding the o bserved bluest colors at given effective temperature and metallicity range of dwarf stars, stellar intrinsic colors, $C^0_{rm B,V}$, $C^0_{rm NUV,B}$, $C^0_{rm FUV,B}$ and $C^0_{rm FUV,NUV}$, are derived according to the stellar parameters from the LAMOST spectroscopic survey and photometric results from the $GALEX$ and APASS surveys. With the derived intrinsic colors, the ultraviolet color excesses are calculated for about 25,000 A- and F-type dwarf stars. Analysis of the color excess ratios yields the extinction law related to the $GALEX$ UV bands: $E_{{rm NUV,B}}$/$E_{{rm B,V}} = 3.77$, $E_{{rm FUV,B}}$/$E_{{rm B,V}} = 3.39$, $E_{{rm FUV,NUV}}$/$E_{{rm B,V}} = -0.38$. The results agree very well with previous works in the $NUV$ band and in general with the extinction curve derived by Fitzpatrick (1999) for $R_{rm V}=3.35$.
We present images, integrated photometry, surface-brightness and color profiles for a total of 1034 nearby galaxies recently observed by the GALEX satellite in its far-ultraviolet (FUV; 1516A) and near-ultraviolet (NUV; 2267A) bands. (...) This data set has been complemented with archival optical, near-infrared, and far-infrared fluxes and colors. We find that the integrated (FUV-K) color provides robust discrimination between elliptical and spiral/irregular galaxies and also among spiral galaxies of different sub-types. Elliptical galaxies with brighter K-band luminosities (i.e. more massive) are redder in (NUV-K) color but bluer in (FUV-NUV) than less massive ellipticals. In the case of the spiral/irregular galaxies our analysis shows the presence of a relatively tight correlation between the (FUV-NUV) color and the total infrared-to-UV ratio. The correlation found between (FUV-NUV) color and K-band luminosity (with lower luminosity objects being bluer than more luminous ones) can be explained as due to an increase in the dust content with galaxy luminosity. The images in this Atlas along with the profiles and integrated properties are publicly available through a dedicated web page at http://nedwww.ipac.caltech.edu/level5/GALEX_Atlas/
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا