ترغب بنشر مسار تعليمي؟ اضغط هنا

Two extreme double-peaked line emitters in the Sloan Digital Sky Survey

68   0   0.0 ( 0 )
 نشر من قبل Xiaobo Dong
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف T.G. Wang




اسأل ChatGPT حول البحث

Double-peaked Balmer lines have been observed in about 150 AGNs and were interpreted preferably as emission from relativistic accretion disks. In this paper, we report the discovery of extreme double-peaked lines in SDSS J0942+0900 and SDSS J1417+6141. The FWHM of the Halpha line ~40,600 km/s in the first object is almost twice as large as the broadest one previously known. By comparing the line profile with accretion disk models, we find that most of the line flux is emitted from a narrow annulus around 100Rg in SDSS J0942+0900, and from a disk of radii between 100 and 400Rg in SDSS J1417+6141. This is the first time that an accretion disk at radii below 100Rg can be directly probed through optical emission lines. A certain asymmetry in the disk is required for both objects. Another much weaker broad Halpha component (EW~20A, and FWHM 4000km/s) is also detected in both objects. Both objects show weak radio emission and strong high-ionization narrow lines.

قيم البحث

اقرأ أيضاً

62 - Y. I. Izotov 2006
We present spectroscopic observations with the 3.6m ESO telescope of two emission-line galaxies, J2104-0035 and J0113+0052, selected from the Data Release 4 (DR4) of the Sloan Digital Sky Survey (SDSS). From our data we determine the oxygen abundance of these systems to be respectively 12+logO/H = 7.26+/-0.03 and 7.17+/-0.09, making them the two most metal-deficient galaxies found thus far in the SDSS and placing them among the five most metal-deficient emission-line galaxies ever discovered. Their oxygen abundances are close to those of the two most metal-deficient emission-line galaxies known, SBS0335-052W with 12+logO/H = 7.12+/-0.03 and I Zw 18 with 12+logO/H = 7.17+/-0.01.
We present AGN from the Sloan Digital Sky Survey (SDSS) having double-peaked profiles of [OIII] 5007,4959 and other narrow emission-lines, motivated by the prospect of finding candidate binary AGN. These objects were identified by means of a visual e xamination of 21,592 quasars at z < 0.7 in SDSS Data Release 7 (DR7). Of the spectra with adequate signal-to-noise, 148 spectra exhibit a double-peaked [OIII] profile. Of these, 86 are Type 1 AGN and 62 are Type 2 AGN. Only two give the appearance of possibly being optically resolved double AGN in the SDSS images, but many show close companions or signs of recent interaction. Radio-detected quasars are three times more likely to exhibit a double-peaked [OIII] profile than quasars with no detected radio flux, suggesting a role for jet interactions in producing the double-peaked profiles. Of the 66 broad line (Type 1) AGN that are undetected in the FIRST survey, 0.9% show double peaked [OIII] profiles. We discuss statistical tests of the nature of the double-peaked objects. Further study is needed to determine which of them are binary AGN rather than disturbed narrow line regions, and how many additional binaries may remain undetected because of insufficient line-of-sight velocity splitting. Previous studies indicate that 0.1% of SDSS quasars are spatially resolved binaries, with typical spacings of ~10 to 100 kpc. If a substantial fraction of the double-peaked objects are indeed binaries, then our results imply that binaries occur more frequently at smaller separations (< 10 kpc). This suggests that simultaneous fueling of both black holes is more common as the binary orbit decays through these spacings.
We have combined a sample of 44984 quasars, selected from the Sloan Digital Sky Survey (SDSS) Data Release 3, with the FIRST radio survey. Using a novel technique where the optical quasar position is matched to the complete radio environment within 4 50, we are able to characterize the radio morphological make-up of what is essentially an optically selected quasar sample, regardless of whether the quasar (nucleus) itself has been detected in the radio. About 10% of the quasar population have radio cores brighter than 0.75 mJy at 1.4 GHz, and 1.7% have double lobed FR2-like radio morphologies. About 75% of the FR2 sources have a radio core (> 0.75 mJy). A significant fraction (~40%) of the FR2 quasars are bent by more than 10 degrees, indicating either interactions of the radio plasma with the ICM or IGM. We found no evidence for correlations with redshift among our FR2 quasars: radio lobe flux densities and radio source diameters of the quasars have similar distributions at low (mean 0.77) and high (mean 2.09) redshifts. Using a smaller high reliability FR2 sample of 422 quasars and two comparison samples of radio-quiet and non-FR2 radio-loud quasars, matched in their redshift distributions, we constructed composite optical spectra from the SDSS spectroscopic data. Based on these spectra we can conclude that the FR2 quasars have stronger high-ionization emission lines compared to both the radio quiet and non-FR2 radio loud sources. This is consistent with the notion that the emission lines are brightened by ongoing shock ionization of ambient gas in the quasar host as the radio source expands.
Two newly identified magnetic cataclysmic variables discovered in the Sloan Digital Sky Survey (SDSS), SDSSJ155331.12+551614.5 and SDSSJ132411.57+032050.5, have spectra showing highly prominent, narrow, strongly polarized cyclotron humps with amplitu des that vary on orbital periods of 4.39 and 2.6 hrs, respectively. In the former, the spacing of the humps indicates the 3rd and 4th harmonics in a magnetic field of ~60 MG. The narrowness of the cyclotron features and the lack of strong emission lines imply very low temperature plasmas and very low accretion rates, so that the accreting area is heated by particle collisions rather than accretion shocks. The detection of rare systems like these exemplifies the ability of the SDSS to find the lowest accretion rate close binaries.
We perform a systematic search for long-term extreme variability quasars (EVQs) in the overlapping Sloan Digital Sky Survey (SDSS) and 3-Year Dark Energy Survey (DES) imaging, which provide light curves spanning more than 15 years. We identified ~100 0 EVQs with a maximum g band magnitude change of more than 1 mag over this period, about 10% of all quasars searched. The EVQs have L_bol~10^45-10^47 erg/s and L/L_Edd~0.01-1. Accounting for selection effects, we estimate an intrinsic EVQ fraction of ~30-50% among all g<~22 quasars over a baseline of ~15 years. These EVQs are good candidates for so-called changing-look quasars, where a spectral transition between the two types of quasars (broad-line and narrow-line) is observed between the dim and bright states. We performed detailed multi-wavelength, spectral and variability analyses for the EVQs and compared to their parent quasar sample. We found that EVQs are distinct from a control sample of quasars matched in redshift and optical luminosity: (1) their UV broad emission lines have larger equivalent widths; (2) their Eddington ratios are systematically lower; and (3) they are more variable on all timescales. The intrinsic difference in quasar properties for EVQs suggest that internal processes associated with accretion are the main driver for the observed extreme long-term variability. However, despite their different properties, EVQs seem to be in the tail of a continuous distribution of quasar properties, rather than standing out as a distinct population. We speculate that EVQs are normal quasars accreting at relatively low accretion rates, where the accretion flow is more likely to experience instabilities that drive the factor of few changes in flux on multi-year timescales.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا