ترغب بنشر مسار تعليمي؟ اضغط هنا

The K20 survey. VII. The spectroscopic catalogue: spectral properties and evolution of the galaxy population

80   0   0.0 ( 0 )
 نشر من قبل Marco Mignoli
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The K20 survey is a near infrared-selected, deep (Ks < 20) redshift survey targeting galaxies in two independent regions of the sky, the CDFS and the q0055-2659 field. The total Ks-selected sample includes 545 objects. Optical spectra for 525 of them have been obtained, providing 501 spectroscopic identifications (including 12 type-1 AGN and 45 stars). This paper describes the final K20 spectroscopic catalogue, along with the technique used to determine redshifts, measure the spectral features and characterize the spectra. The classification of the galaxy spectra has been performed according to a simple parametric recipe that uses the equivalent widths of the two main emission lines (O[II] and Halpha+[N II]) and two continuum indices (the 4000A break index, and a near-UV color index, C(28-39)). We defined three main spectroscopic classes: red early-type galaxies, blue emission-line galaxies and the intermediate galaxies, which show emission lines but a red continuum. More than 95% of the examined galaxies is included in one of these spectral types and a composite spectrum is built for each of the three galaxy classes. The blue emission-line and the early-type galaxies have been divided in redshift bins, and the corresponding composite spectra have been built, in order to investigate the evolution of the spectral properties of the K20 galaxies with redshift.



قيم البحث

اقرأ أيضاً

76 - A. Cimatti 2002
The K20 survey is an ESO VLT optical and near-infrared spectroscopic survey aimed at obtaining spectral information and redshifts of a complete sample of about 550 objects to K_sleq20.0 over two independent fields with a total area of 52 arcmin^2. In this paper we discuss the scientific motivation of such a survey, we describe the photometric and spectroscopic properties of the sample, and we release the $K_s$-band photometric catalog. Extensive simulations showed that the sample is photometrically highly complete to K_s=20. The observed galaxy counts and the R-K_s color distribution are consistent with literature results. We observed spectroscopically 94% of the sample, reaching a spectroscopic redshift identification completeness of 92% to K_sleq20.0 for the observed targets, and of 87% for the whole sample (i.e. counting also the unobserved targets). Deep spectroscopy was complemented with multi-band deep imaging in order to derive tested and reliable photometric redshifts for the galaxies lacking spectroscopic redshifts. The results show a very good agreement between the spectroscopic and the photometric redshifts with <z_{spe}-z_{phot}>=0.01 and with a dispersion of sigma_{Delta z}=0.09. Using both the spectroscopic and the photometric redshifts, we reached an overall redshift completeness of about 98%. The size of the sample, the redshift completeness, the availability of high quality photometric redshifts and multicolor spectral energy distributions make the K20 survey database one of the most complete samples available to date for constraining the currently competing scenarios of galaxy formation and for a variety of other galaxy evolution studies.
We present the Large Area Radio Galaxy Evolution Spectroscopic Survey (LARGESS), a spectroscopic catalogue of radio sources designed to include the full range of radio AGN populations out to redshift z = 0.8. The catalogue covers roughly 800 square d egrees of sky, and provides optical identifications for 19,179 radio sources from the 1.4 GHz Faint Images of the Radio Sky at Twenty-cm (FIRST) survey down to an optical magnitude limit of i_mod < 20.5 in Sloan Digital Sky Survey (SDSS) images. Both galaxies and point-like objects are included, and no colour cuts are applied. In collaboration with the WiggleZ and Galaxy And Mass Assembly (GAMA) spectroscopic survey teams, we have obtained new spectra for over 5,000 objects in the LARGESS sample. Combining these new spectra with data from earlier surveys provides spectroscopic data for 12,329 radio sources in the survey area, of which 10,856 have reliable redshifts. 85% of the LARGESS spectroscopic sample are radio AGN (median redshift z = 0.44), and 15% are nearby star-forming galaxies (median z = 0.08). Low-excitation radio galaxies (LERGs) comprise the majority (83%) of LARGESS radio AGN at z < 0.8, with 12% being high-excitation radio galaxies (HERGs) and 5% radio-loud QSOs. Unlike the more homogeneous LERG and QSO sub-populations, HERGs are a heterogeneous class of objects with relatively blue optical colours and a wide dispersion in mid-infrared colours. This is consistent with a picture in which most HERGs are hosted by galaxies with recent or ongoing star formation as well as a classical accretion disk.
90 - L. Pozzetti 2003
We present the galaxy rest-frame near-IR Luminosity Function (LF) and its cosmic evolution to z=1.5 based on a spectroscopic survey of a magnitude limited sample of galaxies with Ks<20 (the K20 survey, Cimatti et al. 2002b). The LFs have been derived in the rest-frame J and Ks bands using 3 z bins (z_mean= 0.5, 1, 1.5) and compared to the local near-IR LF. The faint-end of the LFs is consistent with the local estimates, with no evidence for a change either in the slope or normalization up to z<1.3. Viceversa, the density of luminous galaxies (M_Ks-5logh_70<-25.5) is higher than locally at all z and relatively constant or mildly increasing with z within our sample. The data are consistent with a mild luminosity evolution both in the J and Ks-band up to z=1.5 (DeltaM_J=-0.69+-0.12 and DeltaM_K=-0.54+-0.12 at z=1). Moreover, we find that red and early-type galaxies dominate the bright-end of the LF, and that their number density shows at most a small decrease (<30%) up to z=1, thus suggesting that massive elliptical galaxies were already in place at z=1 and they should have formed their stars and assembled their mass at higher z. There appears to be a correlation of the optical/near-IR colors with near-IR luminosities, the most luminous/massive galaxies being red/old. We find a slow evolution with z of the near-IR comoving luminosity density to z=1.5. Finally, we show that hierarchical models overpredict significantly the density of low luminosity galaxies at z<=1 and underpredict the density of luminous galaxies at z>=1, whereas PLE models are more consistent with the data up to z=1.5. The GIF model (Kaufmann et al. 1999) shows a clear deficiency of red luminous galaxies at z=1 compared to our observations and predicts a decrease of luminous galaxies with z not observed in our sample.
We study the clustering of galaxies as a function of spectral type and redshift in the range $0.35 < z < 1.1$ using data from the Advanced Large Homogeneous Area Medium Band Redshift Astronomical (ALHAMBRA) survey. The data cover 2.381 deg$^2$ in 7 f ields, after applying a detailed angular selection mask, with accurate photometric redshifts [$sigma_z < 0.014(1+z)$] down to $I_{AB} < 24$. From this catalog we draw five fixed number density, redshift-limited bins. We estimate the clustering evolution for two different spectral populations selected using the ALHAMBRA-based photometric templates: quiescent and star-forming galaxies. For each sample, we measure the real-space clustering using the projected correlation function. Our calculations are performed over the range $[0.03,10.0] h^{-1}$ Mpc, allowing us to find a steeper trend for $r_p lesssim 0.2 h^{-1}$ Mpc, which is especially clear for star-forming galaxies. Our analysis also shows a clear early differentiation in the clustering properties of both populations: star-forming galaxies show weaker clustering with evolution in the correlation length over the analysed redshift range, while quiescent galaxies show stronger clustering already at high redshifts, and no appreciable evolution. We also perform the bias calculation where similar segregation is found, but now it is among the quiescent galaxies where a growing evolution with redshift is clearer. These findings clearly corroborate the well known colour-density relation, confirming that quiescent galaxies are mainly located in dark matter halos that are more massive than those typically populated by star-forming galaxies.
156 - A. Cimatti 2001
We present the results of VLT optical spectroscopy of a complete sample of 78 EROs with R-Ksgeq5 over a field of 52 arcmin^2. About 70% of the 45 EROs with Ksleq19.2 have been spectroscopically identified with old passively evolving and dusty star-fo rming galaxies at 0.7<z<1.5. The two classes are about equally populated and for each of them we present and discuss the average spectrum. From the old ERO average spectrum and for Z=Z_{odot} we derive a minimum age of sim 3 Gyr, corresponding to a formation redshift of z_f gtsima 2.4. PLE models with such formation redshifts well reproduce the density of old EROs (consistent with being passively evolving ellipticals), whereas the predictions of the current hierarchical merging models are lower than the observed densities by large factors (up to an order of magnitude). From the average spectrum of the star-forming EROs we estimate a substantial dust extinction with E(B-V) gtsima 0.5. The star formation rates, corrected for the average reddening, suggest a significant contribution from EROs to the cosmic star-formation density at z sim 1.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا