ترغب بنشر مسار تعليمي؟ اضغط هنا

POINT-AGAPE Pixel Lensing Survey of M31 : Evidence for a MACHO contribution to Galactic Halos

54   0   0.0 ( 0 )
 نشر من قبل Sebastiano Calchi Novati
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. Calchi Novati




اسأل ChatGPT حول البحث

The POINT-AGAPE collaboration is carrying out a search for gravitational microlensing toward M31 to reveal galactic dark matter in the form of MACHOs (Massive Astrophysical Compact Halo Objects) in the halos of the Milky Way and M31. A high-threshold analysis of 3 years of data yields 6 bright, short--duration microlensing events, which are confronted to a simulation of the observations and the analysis. The observed signal is much larger than expected from self lensing alone and we conclude, at the 95% confidence level, that at least 20% of the halo mass in the direction of M31 must be in the form of MACHOs if their average mass lies in the range 0.5-1 M$_odot$. This lower bound drops to 8% for MACHOs with masses $sim 0.01$ M$_odot$. In addition, we discuss a likely binary microlensing candidate with caustic crossing. Its location, some 32 away from the centre of M31, supports our conclusion that we are detecting a MACHO signal in the direction of M31.

قيم البحث

اقرأ أيضاً

127 - A. Riffeser , S. Seitz , R. Bender 2008
We re-analyze the M31 microlensing event WeCAPP-GL1/Point-AGAPE-S3 taking into account that stars are not point-like but extended. We show that the finite size of stars can dramatically change the self-lensing eventrate and (less dramatically) also t he halo lensing eventrate, if events are as bright as WeCAPP-GL1. The brightness of the brightest events mostly depends on the source sizes and fluxes and on the distance distribution of sources and lenses and therefore can be used as a sensitive discriminator between halo-lensing and self-lensing events, provided the stellar population mix of source stars is known well enough. Using a realistic model for the 3D-light distribution, stellar population and extinction of M31, we show that an event like WeCAPP-GL1 is very unlikely to be caused by self-lensing. In the entire WeCAPP-field ($17.2times 17.2$ centered on the bulge) we expect only one self-lensing event every 49 years with the approximate parameters of WeCAPP-GL1 (time-scale 1-3d, $R$ flux-excess <19.0 mag). If we assume only 20% of the dark halos of M31 and the Milky-Way consist of 1 solar mass MACHOs an event like WeCAPP-GL1 would occur every 10 years. Further more, if one uses position, FWHM time scale, flux excess and color of WeCAPP-GL1, self-lensing is even 13 times less likely than lensing by a MACHO, if MACHOs contribute 20% to the total halo mass and have masses in the range of 0.1 to 4 solar masses. We also demonstrate that (i) the brightness distribution of events in general is a good discriminator between self and halo lensing (ii) the time-scale distribution is a good discriminator if the MACHO mass is larger than 0.5 solar masses. Future surveys of M31 like PAndromeda (Pan-STARRS 1) should be able to provide many more such events within the next 4 years.
We present the final analysis of the observational campaign carried out by the PLAN (Pixel Lensing Andromeda) collaboration to detect a dark matter signal in form of MACHOs through the microlensing effect. The campaign consists of about 1 month/year observations carried out during 4 years (2007-2010) at the 1.5m Cassini telescope in Loiano (Astronomical Observatory of BOLOGNA, OAB) plus 10 days of data taken in 2010 at the 2m Himalayan Chandra Telescope (HCT) monitoring the central part of M31 (two fields of about 13x12.6). We establish a fully automated pipeline for the search and the characterization of microlensing flux variations: as a result we detect 3 microlensing candidates. We evaluate the expected signal through a full Monte Carlo simulation of the experiment completed by an analysis of the detection efficiency of our pipeline. We consider both self lensing and MACHO lensing lens populations, given by M31 stars and dark matter halo MACHOs, in the M31 and the Milky Way (MW), respectively. The total number of events is compatible with the expected self-lensing rate. Specifically, we evaluate an expected signal of about 2 self-lensing events. As for MACHO lensing, for full 0.5 (0.01) solar mass MACHO halos, our prediction is for about 4 (7) events. The comparatively small number of expected MACHO versus self lensing events, together with the small number statistics at disposal, do not enable us to put strong constraints on that population. Rather, the hypothesis, suggested by a previous analysis, on the MACHO nature of OAB-07-N2, one of the microlensing candidates, translates into a sizeable lower limit for the halo mass fraction in form of the would be MACHO population, f, of about 15% for 0.5 solar mass MACHOs.
111 - Jin H. An 2004
The POINT-AGAPE collaboration has been monitoring M31 for three seasons with the Wide Field Camera on the Isaac Newton Telescope. In each season, data are taken for one hour per night for roughly sixty nights during the six months that M31 is visible . The two fields of view straddle the central bulge, northwards and southwards. We have calculated the locations, periods and amplitudes of 35414 variable stars in M31 as a by-product of our microlensing search. The variables are classified according to their period and amplitude of variation. They are classified into population I and II Cepheids, Miras and semi-regular long-period variables. The population I Cepheids are associated with the spiral arms, while the central concentration of the Miras and long-period variables varies noticeably, the stars with brighter (and shorter) variations being much more centrally concentrated. A crucial role in the microlensing experiment is played by the asymmetry signal. It was initially assumed that the variable stars would not be a serious problem as their distributions would be symmetric. We demonstrate that this assumption is not correct. We find that differential extinction associated with the dust lanes causes the variable star distributions to be asymmetric. The size and direction of the asymmetry of the variable stars is measured as a function of period and amplitude of variation. The implications of this discovery for the successful completion of the microlensing experiments towards M31 are discussed. (Abridged)
Searching for microlensing in M31 using automated superpixel surveys raises a number of difficulties which are not present in more conventional techniques. Here we focus on the problem that the list of microlensing candidates is sensitive to the sele ction criteria or cuts imposed and some subjectivity is involved in this. Weakening the cuts will generate a longer list of microlensing candidates but with a greater fraction of spurious ones; strengthening the cuts will produce a shorter list but may exclude some genuine events. We illustrate this by comparing three analyses of the same data-set obtained from a 3-year observing run on the INT in La Palma. The results of two of these analyses have been already reported: Belokurov et al. (2005) obtained between 3 and 22 candidates, depending on the strength of their cuts, while Calchi Novati et al. (2005) obtained 6 candidates. The third analysis is presented here for the first time and reports 10 microlensing candidates, 7 of which are new. Only two of the candidates are common to all three analyses. In order to understand why these analyses produce different candidate lists, a comparison is made of the cuts used by the three groups...
66 - V. Belokurov 2004
An automated search is carried out for microlensing events using a catalogue of 44554 variable superpixel lightcurves derived from our three-year monitoring program of M31. Each step of our candidate selection is objective and reproducible by a compu ter. Our search is unrestricted, in the sense that it has no explicit timescale cut. So, it must overcome the awkward problem of distinguishing long-timescale microlensing events from long-period stellar variables. The basis of the selection algorithm is the fitting of the superpixel lightcurves to two different theoretical models, using variable star and blended microlensing templates. Only if microlensing is preferred is an event retained as a possible candidate. Further cuts are made with regard to (i) sampling, (ii) goodness of fit of the peak to a Paczynski curve, (iii) consistency of the microlensing hypothesis with the absence of a resolved source, (iv) achromaticity, (v) position in the colour-magnitude diagram and (vi) signal-to-noise ratio. Our results are reported in terms of first-level candidates, which are the most trustworthy, and second-level candidates, which are possible microlensing but have lower signal-to-noise and are more questionable. The pipeline leaves just 3 first-level candidates, all of which have very short full-width half-maximum timescale (<5 days) and 3 second-level candidates, which have timescales of 31, 36 and 51 days respectively. We also show 16 third-level lightcurves, as an illustration of the events that just fail the threshold for designation as microlensing candidates. They are almost certainly mainly variable stars. Two of the 3 first-level candidates correspond to known events (PA 00-S3 and PA 00-S4) already reported by the POINT-AGAPE project. The remaining first-level candidate is new.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا