ترغب بنشر مسار تعليمي؟ اضغط هنا

Evolution of field early-type galaxies: The view from GOODS/CDFS

51   0   0.0 ( 0 )
 نشر من قبل Ignacio Ferreras
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف I. Ferreras




اسأل ChatGPT حول البحث

(Abridged) We explore the evolution of field early-type galaxies on a sample extracted from GOODS/CDFS. The galaxies are selected by means of a non-parametric analysis followed by visual inspection. We exclude those galaxies which are not consistent with an evolution into the Kormendy relation. The final set comprises 249 galaxies with a median redshift z=0.7. The distribution of number counts versus apparent magnitude suggests a substantial decrease of the comoving number density with redshift. The majority of the galaxies feature passively evolving old stellar populations. One third of those in the upper half of the redshift distribution have blue colors, in contrast to only 10% in the lower redshift subsample. An adaptive binning of the color maps is performed to explore the internal color distribution. We find that most blue galaxies in our sample feature blue cores whereas most of the red early-types are passively evolving stellar populations with red cores. The color gradients and scatter do not evolve with redshift and are compatible with the observations at z=0 assuming a radial dependence of the metallicity within each galaxy. This work emphasizes the need for a careful sample selection, as we found that most of those galaxies which were visually classified as early types -- but then rejected based on the Kormendy relation -- feature blue colors characteristic of recent star formation.

قيم البحث

اقرأ أيضاً

100 - T. Treu 2001
We have measured the Fundamental Plane (FP) parameters for a sample of 30 field early-type galaxies (E/S0) in the redshift range 0.1<z<0.66. We find that: i) the FP is defined and tight out to the highest redshift bin; ii) the intercept gamma evolves as dgamma/dz=0.58+0.09-0.13 (for Omega=0.3, Omega_{Lambda}=0.7), or, in terms of average effective mass to light ratio, as dlog(M/L_B)/dz=-0.72+0.11-0.16, i.e. faster than is observed for cluster E/S0 -0.49+-0.05. In addition, we detect [OII] emission >5AA in 22% of an enlarged sample of 42 massive E/S0 in the range 0.1<z<0.73, in contrast with the quiescent population observed in clusters at similar z. We interpret these findings as evidence that a significant fraction of massive field E/S0 experiences secondary episodes of star-formation at z<1.
We explore the properties of 24 field early-type galaxies at 0.20<z<0.75 down to M_B<=-19.30 in a sample extracted from the FORS Deep Field and the William Herschel Deep Field. High S/N intermediate-resolution VLT spectroscopy was complemented by dee p high-resolution HST/ACS imaging and additional ground-based multi-band photometry. To clarify the low level of star formation (SF) detected in some galaxies, we identify the amount of AGN activity in our sample using archive data of Chandra and XMM-Newton X-ray surveys. The B and K-band Faber-Jackson relations and the Fundamental Plane display a moderate evolution for the field early-type galaxies. Lenticular (S0) galaxies feature on average a stronger luminosity evolution and bluer rest-frame colours which can be explained that they comprise more diverse stellar populations compared to elliptical galaxies. The evolution of the FP can be interpreted as an average change in the dynamical mass-to-light ratio of our galaxies as <Delta log{(M/L_B)}/z>=-0.74pm0.08. The M/L evolution of these field galaxies suggests a continuous mass assembly of field early-type galaxies during the last 5 Gyr, that gets support by recent studies of field galaxies up to z~1. Independent evidence for recent SF activity is provided by spectroscopic (OII em., Hdelta) and photometric (rest-frame colors) diagnostics. Based on the Hdelta absorption feature we detect a weak residual SF for galaxies that accounts for 5%-10% in the total stellar mass of these galaxies. The co-evolution in the luminosity and mass of our galaxies favours a downsizing formation process. We find some evidence that our galaxies experienced a period of SF quenching, possible triggered by AGN activity that is in good agreement with recent results on both observational and theoretical side. (abridged)
We investigate the evolution of mass-selected early-type field galaxies using a sample of 28 gravitational lenses spanning the redshift range 0 < z < 1. Based on the redshift-dependent intercept of the fundamental plane in the rest frame B band, we m easure an evolution rate of d log (M/L)_B / dz = -0.56 +/- 0.04 (all errors are 1 sigma unless noted) if we directly compare to the local intercept measured from the Coma cluster. Re-fitting the local intercept helps minimize potential systematic errors, and yields an evolution rate of d log (M/L)_B / dz = -0.54 +/- 0.09. An evolution analysis of properly-corrected aperture mass-to-light ratios (defined by the lensed image separations) is closely related to the Faber-Jackson relation. In rest frame B band we find an evolution rate of d log (M/L)_B / dz = -0.41 +/- 0.21, a present-day characteristic magnitude of M_{*0} = -19.70 + 5 log h +/- 0.29 (assuming a characteristic velocity dispersion of sigma_{DM*} = 225 km/s), and a Faber-Jackson slope of gamma_{FJ} = 3.29 +/- 0.58. The measured evolution rates favor old stellar populations (mean formation redshift z_f > 1.8 at 2 sigma confidence for a Salpeter initial mass function and a flat Omega_m =0.3 cosmology) among early-type field galaxies, and argue against significant episodes of star formation at z < 1.
In this proceeding we make use of the two-dimensional stellar kinematics of a representative sample of E and S0 galaxies obtained with the SAURON integral-field spectrograph to reveal that early-type galaxies appear in two broad flavours, depending o n whether they exhibit clear large-scale rotation or not. We measure the level of rotation via a new parameter LambdaR and use it as a basis for a new kinematic classification that separates early-type galaxies into slow and fast rotators. With the aid of broad-band imaging we will reinforce this finding by comparing our kinematic results to the photometric properties of these two classes.
ABRIDGED- The UV-optical color magnitude diagram (CMD) of rich galaxy groups is characterised by a well developed Red Sequence (RS), a Blue Cloud (BC) and the so-called Green Valley (GV). Loose, less evolved groups of galaxies likely not virialized y et may lack a well defined RS. This is actually explained in the framework of galaxy evolution. We are focussing on understanding galaxy migration towards the RS, checking for signatures of such a transition in their photometric and morphological properties. We report on the UV properties of a sample of ETGs galaxies inhabiting the RS. The analysis of their structures, as derived by fitting a Sersic law to their UV luminosity profiles, suggests the presence of an underlying disk. This is the hallmark of dissipation processes that still must have a role in the evolution of this class of galaxies. SPH simulations with chemo-photometric implementations able to match the global properties of our targets are used to derive their evolutionary paths through UV-optical CDM, providing some fundamental information such as the crossing time through the GV, which depends on their luminosity. The transition from the BC to the RS takes several Gyrs, being about 3-5 Gyr for the the brightest galaxies and more long for fainter ones, if it occurs. The photometric study of nearby galaxy structures in UV is seriously hampered by either the limited FoV of the cameras (e.g in HST) or by the low spatial resolution of the images (e.g in the GALEX). Current missions equipped with telescopes and cameras sensitive to UV wavelengths, such as Swift-UVOT and Astrosat-UVIT, provide a relatively large FoV and better resolution than the GALEX. More powerful UV instruments (size, resolution and FoV) are obviously bound to yield fundamental advances in the accuracy and depth of the surface photometry and in the characterisation of the galaxy environment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا