ﻻ يوجد ملخص باللغة العربية
The very high rates of second generation star formation detected and inferred in high redshift objects should be accompanied by intense millimetre-wave emission from hot core molecules. We calculate the molecular abundances likely to arise in hot cores associated with massive star formation at high redshift, using several independent models of metallicity in the early Universe. If the number of hot cores exceeds that in the Milky Way Galaxy by a factor of at least one thousand, then a wide range of molecules in high redshift hot cores should have detectable emission. It should be possible to distinguish between independent models for the production of metals and hence hot core molecules should be useful probes of star formation at high redshift.
We use the GALFORM semi-analytical model to study high density regions traced by radio galaxies and quasars at high redshifts. We explore the impact that baryonic physics has upon the properties of galaxies in these environments. Star-forming emissio
We present an extensive X-ray spectral analysis of the cores of 19 FRII sources in the redshift range 0.5<z<1.0 which were selected to be matched in isotropic radio power. The sample consists of 10 radio galaxies and 9 quasars. We compare our results
Recent years have seen major advances in understanding the state of the intergalactic medium (IGM) at high redshift. Some aspects of this understanding are reviewed here. In particular, we discuss: (1) Different probes of IGM like Gunn-Peterson test,
Recent observations have gathered a considerable sample of high redshift galaxy candidates and determined the evolution of their luminosity function (LF). To interpret these findings, we use cosmological SPH simulations including, in addition to stan
We report on mid-infrared imaging of hot cores performed with SpectroCam-10 and TIMMI2. The observations aimed at the detection of thermal emission presumably associated with the hot cores. Mid-infrared flux measurements are required to improve the l