ترغب بنشر مسار تعليمي؟ اضغط هنا

Gemini and Chandra observations of Abell 586, a relaxed strong-lensing cluster

101   0   0.0 ( 0 )
 نشر من قبل Eduardo S. Cypriano
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the mass content of the massive strong-lensing cluster Abell 586 ($z = 0.17$). We use optical data (imaging and spectroscopy) obtained with the Gemini Multi-Object Spectrograph (GMOS) mounted on the 8-m Gemini-North telescope, together with publicly available X-ray data taken with the textit{Chandra} space telescope. Employing different techniques -- velocity distribution of galaxies, weak gravitational lensing, and X-ray spatially resolved spectroscopy -- we derive mass and velocity dispersion estimates from each of them. All estimates agree well with each other, within a 68% confidence level, indicating a velocity dispersion of 1000 -- 1250 kms. The projected mass distributions obtained through weak-lensing and X-ray emission are strikingly similar, having nearly circular geometry. We suggest that Abell 586 is probably a truly relaxed cluster, whose last major merger occurred more than $sim 4$ Gyr ago



قيم البحث

اقرأ أيضاً

123 - M. E. Machacek 2001
We present results from two observations (combined exposure of ~17 ks) of galaxy cluster A2218 using the Advanced CCD Imaging Spectrometer on board the Chandra X-ray Observatory that were taken on October 19, 1999. Using a Raymond-Smith single temper ature plasma model corrected for galactic absorption we find a mean cluster temperature of kT = 6.9+/-0.5 keV, metallicity of 0.20+/-0.13 (errors are 90 % CL) and rest-frame luminosity in the 2-10 keV energy band of 6.2x10^{44} erg/s in a LambdaCDM cosmology with H_0=65 km/s/Mpc. The brightness distribution within 4.2 of the cluster center is well fit by a simple spherical beta model with core radius 66.4 and beta = 0.705 . High resolution Chandra data of the inner 2 of the cluster show the x-ray brightness centroid displaced ~22 from the dominant cD galaxy and the presence of azimuthally asymmetric temperature variations along the direction of the cluster mass elongation. X-ray and weak lensing mass estimates are in good agreement for the outer parts (r > 200h^{-1}) of the cluster; however, in the core the observed temperature distribution cannot reconcile the x-ray and strong lensing mass estimates in any model in which the intracluster gas is in thermal hydrostatic equilibrium. Our x-ray data are consistent with a scenario in which recent merger activity in A2218 has produced both significant non-thermal pressure in the core and substructure along the line of sight; each of these phenomena probably contributes to the difference between lensing and x-ray core mass estimates.
Abell 383 is a famous rich cluster (z = 0.1887) imaged extensively as a basis for intensive strong and weak lensing studies. Nonetheless there are few spectroscopic observations. We enable dynamical analyses by measuring 2360 new redshifts for galaxi es with r$_{petro} leq 20.5$ and within 50$^prime$ of the BCG (Brightest Cluster Galaxy: R.A.$_{2000} = 42.014125^circ$, Decl$_{2000} = -03.529228^circ$). We apply the caustic technique to identify 275 cluster members within 7$h^{-1}$ Mpc of the hierarchical cluster center. The BCG lies within $-11 pm 110$ km s$^{-1}$ and 21 $pm 56 h^{-1}$ kpc of the hierarchical cluster center; the velocity dispersion profile of the BCG appears to be an extension of the velocity dispersion profile based on cluster members. The distribution of cluster members on the sky corresponds impressively with the weak lensing contours of Okabe et al. (2010) especially when the impact of foreground and background structure is included. The values of R$_{200}$ = $1.22pm 0.01 h^{-1}$ Mpc and M$_{200}$ = $(5.07 pm 0.09)times 10^{14} h^{-1}$ M$_odot$ obtained by application of the caustic technique agree well with recent completely independent lensing measures. The caustic estimate extends direct measurement of the cluster mass profile to a radius of $sim 5 h^{-1}$ Mpc.
We present a strong lensing analysis of the galaxy cluster Abell 370 (z=0.375) based on the recent multicolor ACS images obtained as part of the Early Release Observation (ERO) that followed the Hubble Service Mission #4. Back in 1987, the giant grav itational arc (z=0.725) in Abell 370 was one of the first pieces of evidence that massive clusters are dense enough to act as strong gravitational lenses. The new observations reveal in detail its disklike morphology, and we show that it can be interpreted as a complex five-image configuration, with a total magnification factor of 32+/-4. Moreover, the high resolution multicolor information allowed us to identify 10 multiply imaged background galaxies. We derive a mean Einstein radius of RE=39+/-2 for a source redshift at z=2, corresponding to a mass of M(<RE) = 2.82+/-0.15 1e14 Msol and M(<250 kpc)=3.8+/-0.2 1e14 Msol, in good agreement with Subaru weak-lensing measurements. The typical mass model error is smaller than 5%, a factor 3 of improvement compared to the previous lensing analysis. Abell 370 mass distribution is confirmed to be bi-modal with very small offset between the dark matter, the X-ray gas and the stellar mass. Combining this information with the velocity distribution reveals that Abell 370 is likely the merging of two equally massive clusters along the line of sight, explaining the very high mass density necessary to efficiently produce strong lensing. These new observations stress the importance of multicolor imaging for the identification of multiple images which is key to determining an accurate mass model. The very large Einstein radius makes Abell 370 one of the best clusters to search for high redshift galaxies through strong magnification in the central region.
(abridged) We present extensive multi-color imaging and low resolution VIMOS Integral Field Unit spectroscopic observations of the X-ray luminous cluster Abell 2667 (z=0.233). An extremely bright giant gravitational arc (z=1.0334) is easily identifie d as part of a triple image system and other fainter multiple images are also revealed by the HST-WFPC2 images. The VIMOS-IFU observations cover a field of view of 54 x 54 and enable us to determine the redshift of all galaxies down to V=22.5. Furthermore, redshifts could be identified for some sources down to V=23.2. In particular we identify 21 cluster members in the cluster inner region, from which we derive a velocity dispersion of sigma=960 km/s, corresponding to a total mass of 7.1 x 10^{13} solar masses within a 110 kpc radius. Using the multiple images constraints and priors on the mass distribution of cluster galaxy halos we construct a detailed lensing mass model leading to a total mass of 2.9 x 10^{13} solar masses within the Einstein radius (16 arcsec). The lensing mass and dynamical mass are in good agreement although the dynamical one is much less accurate. Comparing these measurements with published X-ray analysis, is however less conclusive. Although the X-ray temperature matches the dynamical and lensing estimates, the published NFW mass model derived from the X-ray measurement with its small concentration of c ~3 can not account for the large Einstein radius observed in this cluster. A larger concentration of ~6 would however match the strong lensing measurements. These results are likely reflecting the complex structure of the cluster mass distribution, underlying the importance of panchromatic studies from small to large scale in order to better understand cluster physics.
We present a first strong-lensing model for the galaxy cluster RM J121218.5+273255.1 ($z=0.35$; hereafter RMJ1212; also known as Abell 1489). This cluster is amongst the top 0.1% richest clusters in the redMaPPer catalog; it is significantly detected in X-ray and through the Sunyaev-Zeldovich effect in ROSAT and emph{Planck} data, respectively; and its optical luminosity distribution implies a very large lens, following mass-to-light scaling relations. Based on these properties it was chosen for the Webb Medium Deep Fields (WMDF) JWST/GTO program. In preparation for this program, RMJ1212 was recently imaged with GMOS on Gemini North and in seven optical and near-infrared bands with the emph{Hubble Space Telescope}. We use these data to map the inner mass distribution of the cluster, uncovering various sets of multiple images. We also search for high-redshift candidates in the data, as well as for transient sources. We find over a dozen high-redshift ($zgtrsim6$) candidates based on both photometric redshift and the dropout technique. No prominent ($gtrsim5 sigma$) transients were found in the data between the two HST visits. Our lensing analysis reveals a relatively large lens with an effective Einstein radius of $theta_{E}simeq32pm3$ ($z_{s}=2$), in broad agreement with the scaling-relation expectations. RMJ1212 demonstrates that powerful lensing clusters can be selected in a robust and automated way following the light-traces-mass assumption.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا