ﻻ يوجد ملخص باللغة العربية
We show the astrometric potential of the Wide Field Imager at the focus of the MPI-ESO 2.2m Telescope. Currently, we are able to measure the position of a well-exposed star with a precision of $sim$4 mas/frame in each coordinate (under 0.8 arcsec seeing conditions). We present some preliminary results here.
Omega Centauri is the most well studied Globular Cluster because of its numerous puzzling features. Intensive spectroscopic follow-up observing campaigns targeting stars at different positions on the color-magnitude diagram promises to clarify some o
The solar-age open cluster M67 (C0847+120, NGC2682) is a touchstone in studies of the old Galactic disk. Despite its outstanding role, the census of cluster membership for M67 at fainter magnitudes and their properties are not well-established. Using
High-precision astrometry requires accurate point-spread function modeling and accurate geometric-distortion corrections. This paper demonstrates that it is possible to achieve both requirements with data collected at the high acuity wide-field K-ban
High precision astrometry requires an accurate geometric distortion solution. In this work, we present an average correction for the Blue Camera of the Large Binocular Telescope which enables a relative astrometric precision of ~15 mas for the B_Bess
This paper is the first of a series of papers in which we will apply the methods we have developed for high-precision astrometry (and photometry) with the Hubble Space Telescope to the case of wide-field ground-based images. In particular, we adapt t