ترغب بنشر مسار تعليمي؟ اضغط هنا

The luminosity dependence of the Type 1 AGN fraction

368   0   0.0 ( 0 )
 نشر من قبل Chris Simpson
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Chris Simpson




اسأل ChatGPT حول البحث

Using a complete, magnitude-limited sample of active galaxies from the Sloan Digital Sky Survey (SDSS) we show that the fraction of broad-line (Type 1) active galactic nuclei increases with luminosity of the isotropically-emitted [O III] narrow emission line. Our results are quantitatively in agreement with, and far less uncertain than, similar trends found from studies of X-ray and radio-selected active galaxies. While the correlation between broad-line fraction and luminosity is qualitatively consistent with the receding torus model, its slope is shallower and we therefore propose a modification to this model where the height of the torus increases slowly with AGN luminosity. We demonstrate that the faint-end slope of the AGN luminosity function steepens significantly when a correction for `missing Type 2 objects is made and that this can substantially affect the overall AGN luminosity density extrapolated from samples of more luminous objects.



قيم البحث

اقرأ أيضاً

We use a phenomenological model which connects the galaxy and AGN populations to investigate the process of AGN triggering through major galaxy mergers at z~0. The model uses stellar mass functions as input and allows the prediction of AGN luminosity functions based on assumed Eddington ratio distribution functions (ERDFs). We show that the number of AGN hosted by merger galaxies relative to the total number of AGN increases as a function of AGN luminosity. This is due to more massive galaxies being more likely to undergo a merger and does not require the assumption that mergers lead to higher Eddington ratios than secular processes. Our qualitative analysis also shows that to match the observations, the probability of a merger galaxy hosting an AGN and accreting at a given Eddington value has to be increased by a factor ~10 relative to the general AGN population. An additional significant increase of the fraction of high Eddington ratio AGN among merger host galaxies leads to inconsistency with the observed X-ray luminosity function. Physically our results imply that, compared to the general galaxy population, the AGN fraction among merger galaxies is ~10 times higher. On average, merger triggering does however not lead to significantly higher Eddington ratios.
Galaxy mergers are key events in galaxy evolution, often causing massive starbursts and fueling active galactic nuclei (AGN). In these highly dynamic systems, it is not yet precisely known how much starbursts and AGN respectively contribute to the to tal luminosity, at what interaction stages they occur, and how long they persist. Here we estimate the fraction of the bolometric infrared (IR) luminosity that can be attributed to AGN by measuring and modeling the full ultraviolet to far-infrared spectral energy distributions (SEDs) in up to 33 broad bands for 24 merging galaxies with the Code for Investigating Galaxy Emission. In addition to a sample of 12 confirmed AGN in late-stage mergers, found in the $Infrared$ $Array$ $Satellite$ Revised Bright Galaxy Sample or Faint Source Catalog, our sample includes a comparison sample of 12 galaxy mergers from the $Spitzer$ Interacting Galaxies Survey, mostly early-stage. We perform identical SED modeling of simulated mergers to validate our methods, and we supplement the SED data with mid-IR spectra of diagnostic lines obtained with $Spitzer$ InfraRed Spectrograph. The estimated AGN contributions to the IR luminosities vary from system to system from 0% up to 91% but are significantly greater in the later-stage, more luminous mergers, consistent with what is known about galaxy evolution and AGN triggering.
In a previous paper (Gavignaud et al. 2006), we presented the type-1 Active Galactic Nuclei (AGN) sample obtained from the first epoch data of the VIMOS-VLT Deep Survey (VVDS). The sample consists of 130 faint, broad-line AGN with redshift up to z=5 and 17.5< I <24.0, selected on the basis of their spectra. In this paper we present the measurement of the Optical Luminosity Function up to z=3.6 derived from this sample, we compare our results with previous results from brighter samples both at low and at high redshift. Our data, more than one magnitude fainter than previous optical surveys, allow us to constrain the faint part of the luminosity function up to high redshift. By combining our faint VVDS sample with the large sample of bright AGN extracted from the SDSS DR3 (Richards et al., 2006b) and testing a number of different evolutionary models, we find that the model which better represents the combined luminosity functions, over a wide range of redshift and luminosity, is a luminosity dependent density evolution (LDDE) model, similar to those derived from the major X-surveys. Such a parameterization allows the redshift of the AGN space density peak to change as a function of luminosity and explains the excess of faint AGN that we find at 1.0< z <1.5. On the basis of this model we find, for the first time from the analysis of optically selected samples, that the peak of the AGN space density shifts significantly towards lower redshift going to lower luminosity objects. This result, already found in a number of X-ray selected samples of AGN, is consistent with a scenario of AGN cosmic downsizing, in which the density of more luminous AGN, possibly associated to more massive black holes, peaks earlier in the history of the Universe, than that of low luminosity ones.
Differential 2.2um (K-band) luminosity functions are presented for a complete sample of 1570 nearby Vgsr < 3000 km/s, where Vgsr is the velocity measured with respect to the Galactic standard of rest), bright (K < 10 mag), galaxies segregated by visi ble morphology. The K-band luminosity function for late-type spirals follows a power law that rises towards low luminosities whereas the K-band luminosity functions for ellipticals, lenticulars and bulge-dominated spirals are peaked with a fall off at both high and low luminosities. However, each morphological type (E, S0, S0/a-Sab, Sb-Sbc, Sc-Scd) contributes approximately equally to the overall K-band luminosity density in the local universe, and by inference, the stellar mass density as well.
105 - Gerold Busch 2013
There is growing evidence that every galaxy with a considerable spheroidal component hosts a supermassive black hole (SMBH) at its center. Strong correlations between the SMBH and the spheroidal component suggest a physical connection through a coevo lutionary scenario. For very massive galaxies a merger-driven scenario is preferred, resulting in elliptical galaxies. In the nearby universe, we find many disk galaxies, showing no signs of recent interaction. Alternative secular evolutionary scenarios for such galaxies involve internal triggers like bars and spiral arms or minor mergers. We analyze a sample of 99 nearby galaxies (0.02 < z < 0.06) from the Hamburg/ESO survey in order to get insight into structural and dynamical properties of the hosts to trace the origin of the bulge-SMBH correlation. In this work, we first collect images of sample members to get an impression of the morphological distribution in the sample. In a second step, we start to analyze sensitive, high resolution near-infrared images of 20 galaxies, performing aperture photometry and bulge-disk decomposition with the BUDDA code. We find an unexpected high fraction of barred galaxies and many other structural peculiarities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا