ﻻ يوجد ملخص باللغة العربية
We present results of a method for an automatic search for HI shells in 3D data cubes and apply it to the Leiden-Dwingeloo HI survey of the northern Milky Way. In the 2nd Galactic quadrant, where identifications of structures are not substantially influenced by overlapping, we find nearly 300 structures. The Galactic distribution of shells has an exponential profile in the radial direction with a scale length of 3 kpc. In the z direction, one half of the shells are found at distances smaller than 500 pc. We also calculate the energies necessary to create the shells: there are several structures with energies greater than 10 E_SN but only one with an energy exceeding 100 E_SN. Their size distribution, corrected for distance effects, is approximated by a power-law with an index 2.1. Our identifications provide a lower limit to the filling factor of shells in the outer Milky Way: f_2D = 0.4 and f_3D = 0.05.
HI shells, which may be formed by the activity of young and massive stars, or connected to energy released by interactions of high-velocity clouds with the galactic disk, may be partly responsible both for the destruction of CO clouds and for the cre
Aims: We derive the 3-D HI volume density distribution for the Galactic disk out to R = 60 kpc. Methods: Our analysis is based on parameters for the warp and rotation curve derived previously. The data are taken from the Leiden/Argentine/Bonn all sky
We investigate data from the Galactic Effelsberg--Bonn HI Survey (EBHIS), supplemented with data from the third release of the Galactic All Sky Survey (GASS III) observed at Parkes. We explore the all sky distribution of the local Galactic HI gas wit
As part of a survey of HI 21-cm emission in the Southern Milky Way, we have detected two large shells in the interstellar neutral hydrogen near l=279 deg. The center velocities are +36 and +59 km/s, which puts the shells at kinematic distances of 7 a
We present chemical abundances of 57 metal-poor stars that are likely constituents of the outer stellar halo in the Milky Way. Almost all of the sample stars have an orbit reaching a maximum vertical distance (Z_max) of >5 kpc above and below the Gal