ﻻ يوجد ملخص باللغة العربية
We have measured the Faraday rotation toward a large sample of polarized radio sources behind the Large Magellanic Cloud (LMC), to determine the structure of this galaxys magnetic field. The magnetic field of the LMC consists of a coherent axisymmetric spiral of field strength ~1 microgauss. Strong fluctuations in the magnetic field are also seen, on small (<0.5 parsecs) and large (~100 parsecs) scales. The significant bursts of recent star formation and supernova activity in the LMC argue against standard dynamo theory, adding to the growing evidence for rapid field amplification in galaxies.
We present an investigation into the magnetism of the Magellanic Bridge, carried out through the observation of Faraday rotation towards 167 polarized extragalactic radio sources spanning the continuous frequency range of 1.3 - 3.1 GHz with the Austr
We present the first detailed assessment of the large-scale rotation of any galaxy based on full three-dimensional velocity measurements. We do this for the LMC by combining our HST average proper motion (PM) measurements for stars in 22 fields, with
This paper has been withdrawn.
We present a study of the line-of-sight magnetic fields in five large-diameter Galactic HII regions. Using the Faraday rotation of background polarized radio sources, as well as dust-corrected H-alpha surface brightness as a probe of electron density
We describe a method to measure the magnetic field orientation of coronal mass ejections (CMEs) using Faraday rotation (FR). Two basic FR profiles, Gaussian-shaped with a single polarity or N-like with polarity reversals, are produced by a radio sour