ﻻ يوجد ملخص باللغة العربية
Nuclear physics has a long and productive history of application to astrophysics which continues today. Advances in the accuracy and breadth of astrophysical data and theory drive the need for better experimental and theoretical understanding of the underlying nuclear physics. This paper will review some of the scenarios where nuclear physics plays an important role, including Big Bang Nucleosynthesis, neutrino production by our sun, nucleosynthesis in novae, the creation of elements heavier than iron, and neutron stars. Big-bang nucleosynthesis is concerned with the formation of elements with A <= 7 in the early Universe; the primary nuclear physics inputs required are few-nucleon reaction cross sections. The nucleosynthesis of heavier elements involves a variety of proton-, alpha-, neutron-, and photon-induced reactions, coupled with radioactive decay. The advent of radioactive ion beam facilities has opened an important new avenue for studying these processes, as many involve radioactive species. Nuclear physics also plays an important role in neutron stars: both the nuclear equation of state and cooling processes involving neutrino emission play a very important role. Recent developments and also the interplay between nuclear physics and astrophysics will be highlighted.
Nuclear astrophysics, the union of nuclear physics and astronomy, went through an impressive expansion during the last twenty years. This could be achieved thanks to milestone improvements in astronomical observations, cross section measurements, pow
This paper follows the inaugural talk one of the authors (LT) gave at the opening of the ECT* workshop with the same title, which he co-organized in Trento, Italy, November 5-9, 2018. As such it follows the ideas expressed there, which were to out-li
In this review, we emphasize the interplay between astrophysical observations, modeling, and nuclear physics laboratory experiments. Several important nuclear cross sections for astrophysics have long been identified e.g. 12C(alpha,gamma)16O for stel
This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It summarizes the outcom
We discuss recent developments in indirect methods used in nuclear astrophysics to determine the capture cross sections and subsequent rates of various stellar burning processes, when it is difficult to perform the corresponding direct measurements.