ترغب بنشر مسار تعليمي؟ اضغط هنا

Supermassive black hole mass measurements for NGC 1300 and NGC 2748 based on HST emission-line gas kinematics

62   0   0.0 ( 0 )
 نشر من قبل John Atkinson
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present Space Telescope Imaging Spectrograph emission-line spectra of the central regions of the spiral galaxies NGC 1300 and NGC 2748. From the derived kinematics of the nuclear gas we have found evidence for central supermassive black holes in both galaxies. The estimated mass of the black hole in NGC 1300 is 6.6 (+6.3, -3.2) x 10^7 solar masses and in NGC 2748 is 4.4 (+3.5, -3.6) x 10^7 solar masses (both at the 95% confidence level). These two black hole mass estimates contribute to the poorly sampled low-mass end of the nuclear black hole mass spectrum.



قيم البحث

اقرأ أيضاً

We present results from a kinematical study of the gas in the nucleus of a sample of three LINER galaxies, obtained from archival HST/STIS long-slit spectra. We found that, while for the elliptical galaxy NGC 5077, the observed velocity curves are co nsistent with gas in regular rotation around the galaxys center, this is not the case for the two remaining objects. By modeling the surface brightness distribution and rotation curve from the emission lines in NGC 5077, we found that the observed kinematics of the circumnuclear gas can be accurately reproduced by adding to the stellar mass component a black hole mass of M_bh = 6.8 (-2.8,+4.3) 10**8 M_sun (uncertainties at a 1 sigma level); the radius of its sphere of influence (R_sph ~ 0.34) is well-resolved at the HST resolution. The BH mass estimate in NGC 5077 is in fairly good agreement with both the M_bh-M_bul (with an upward scatter of ~ 0.4 dex) and M_bh-sigma correlations (with an upward scatter of 0.5 dex in the Tremaine et al. form and essentially no scatter using the Ferrarese et al. form) and provides further support for the presence of a connection between the ``residuals from the M_bh-sigma correlation and the bulge effective radius. This indicates the presence of a black holes ``fundamental plane in the sense that a combination of at least sigma and R_e drives the correlations between M_bh and host bulge properties.
As a part of the mm-Wave Interferometric Survey of Dark Object Masses (WISDOM) project, we present an estimate of the mass of the supermassive black hole (SMBH) in the nearby fast-rotator early-type galaxy NGC 3665. We obtained Combined Array for Res earch in Millimeter Astronomy (CARMA) B and C array observations of the $^{12}$CO$(J=2-1)$ emission line with a combined angular resolution of $0.59$. We analysed and modelled the three-dimensional molecular gas kinematics, obtaining a best-fit SMBH mass $M_{rm BH}=5.75^{+1.49}_{-1.18} times 10^{8}$ $M_{odot}$, a mass-to-light ratio at $H$-band $(M/L)_{H}=1.45pm0.04$ $(M/L)_{odot, H}$, and other parameters describing the geometry of the molecular gas disc (statistical errors, all at $3sigma$ confidence). We estimate the systematic uncertainties on the stellar $M/L$ to be $approx0.2$ $(M/L)_{odot, H}$, and on the SMBH mass to be $approx0.4times10^{8}$ $M_{odot}$. The measured SMBH mass is consistent with that estimated from the latest correlations with galaxy properties. Following our older works, we also analysed and modelled the kinematics using only the major-axis position-velocity diagram, and conclude that the two methods are consistent.
Supermassive black hole (SMBH) masses can be measured by resolving the dynamical influences of the SMBHs on spatially-resolved tracers of the central potentials. Modern long-baseline interferometers have enabled the use of molecular gas as such a tra cer. We present here Atacama Large Millimeter/submillimeter Array observations of the elliptical galaxy NGC 7052 at 0.11 arcseconds (37 pc) resolution in the 12CO(2-1) line and 1.3mm continuum emission. This resolution is sufficient to resolve the region in which the potential is dominated by the SMBH. We forward model these observations, using a multi-Gaussian expansion of a Hubble Space Telescope F814W image and spatially-constant mass-to-light ratio to model the stellar mass distribution. We infer a SMBH mass of $2.5pm0.3times10^9,mathrm{M_odot}$ and a stellar I-band mass-to-light ratio of $4.6pm 0.2,mathrm{M_odot/L_{odot,I}}$ ($3sigma$ confidence intervals). This SMBH mass is significantly larger than that derived using ionised gas kinematics, which however appear significantly more kinematically disturbed than the molecular gas. We also show that a central molecular gas deficit is likely to be the result of tidal disruption of molecular gas clouds due to the strong gradient in the central gravitational potential.
We combine Hubble Space Telescope spectroscopy and ground-based integral-field data from the SAURON and OASIS instruments to study the central black hole in the nearby elliptical galaxy NGC 3379. From these data, we obtain kinematics of both the star s and the nuclear gaseous component. Axisymmetric three-integral models of the stellar kinematics find a black hole of mass 1.4 (+2.6 / -1.0) x 10^8 M_sun (3 sigma errors). These models also probe the velocity distribution in the immediate vicinity of the black hole and reveal a nearly isotropic velocity distribution throughout the galaxy and down to the black hole sphere of influence R_BH. The morphology of the nuclear gas disc suggests that it is not in the equatorial plane; however the core of NGC 3379 is nearly spherical. Inclined thin-disc models of the gas find a nominal black hole of mass 2.0 (+/- 0.1) x 10^8 M_sun (3 sigma errors), but the model is a poor fit to the kinematics. The data are better fit by introducing a twist in the gas kinematics (with the black hole mass assumed to be 2.0 x 10^8 M_sun), although the constraints on the nature and shape of this perturbation are insufficient for more detailed modelling. Given the apparent regularity of the gas discs appearance, the presence of such strong non-circular motion indicates that caution must be used when measuring black hole masses with gas dynamical methods alone.
(abridged) We investigate the kinematics of the central gas disk of the radio-loud elliptical galaxy NGC 4335, derived from HST/STIS long-slit spectroscopic observations of Halpha+[NII] along 3 parallel slit positions. The observed mean velocities ar e consistent with a rotating thin disk. We model the gas disk in the customary way. This sets a 3 sigma upper limit of 10^8 Msun on black hole mass, Mbh. The velocity dispersion at r <0.5 is in excess of that predicted by the thin rotating disk model. This does not invalidate the model, if the excess dispersion is caused by localized turbulent motion in addition to bulk circular rotation. However, if instead the dispersion is caused by the BH potential then a mass Mbh ~ 6x10^8 Msun is inferred by modeling the central gas dispersion as due to an isotropic spherical distribution of collisionless gas cloudlets. The stellar kinematics for NGC 4335 are derived from a ground-based (WHT/ISIS) long-slit observation along the galaxy major axis. A two-integral model of the stellar dynamics yields Mbh >= 3x10^9 Msun. However, there is reason to believe that this model overestimates Mbh. Reported correlations between black hole mass and inner stellar velocity dispersion sigma predict Mbh to be >= 5.4x10^8 Msun in NGC 4335. If our standard thin disk modeling of the gas kinematics is valid, then NGC 4335 has an unusually low Mbh for its velocity dispersion. If, on the other hand, this approach is flawed, and provides an underestimate of Mbh, then black hole masses for other galaxies derived from HST gas kinematics with the same assumptions should be treated with caution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا