ﻻ يوجد ملخص باللغة العربية
The majority of High Mass X-ray Binaries (HMXBs) behave as X-ray pulsars, revealing that they contain a magnetised neutron star. Among the four HMXBs not showing pulsations, and that do not show the characteristics of accreting black holes, there is the unusual HMXB 4U 2206+54. Here we present contemporaneous high-energy and radio observations of this system conducted with INTEGRAL and the VLA in order to unveil its nature. The high-energy spectra show clear indications of the presence of an absorption feature at ~32 keV. This is the third high-energy observatory which reveals marginal evidence of this feature, giving strong support to the existence of a cyclotron resonance scattering feature, which implies a magnetic field of 3.6 x 10^12 G. On the other hand, the source is not detected at centimetre radio wavelengths with a 3 sigma upper limit of 0.039 mJy. The expected radio emission for an accreting black hole in the low/hard state, inferred from X-ray flux measurements, would be at least 60 times greater than the measured upper limit. Both results firmly indicate that, in spite of the absence of pulsations, 4U 2206+54 hosts a magnetic accreting neutron star, the first one not to be observed as an X-ray pulsar.
We present new radial velocities of the high-mass X-ray binary star 4U 2206+54 based on optical spectra obtained with the Coude spectrograph at the 2m RCC telescope at the Rozhen National Astronomical Observatory, Bulgaria in the period November 2011
We present the results of our long-term monitoring of BD+53 2790, the optical counterpart to the X-ray source 4U~2206+54. Unlike previous studies that classify the source as a Be/X-ray binary, we find that its optical and infrared properties differ f
BD+53 2790, an O9.5Vp star, is the optical counterpart to the HMXRB 4U 2206+54. This system was classified initially as a BeX, but observational evidence soon stressed the need to revise this classification. The permanent asymmetry in the H-alpha lin
The source 4U 2206+54 is one of the most enigmatic high-mass X-ray binaries. In spite of intensive searches, X-ray pulsations have not been detected in the time range 0.001-1000 s. A cyclotron line at ~30 keV has been suggested by various authors but
The X-ray binary system 4U 2206+54 hides many mysteries. Among them, the surprising behavior of both of its components: the O9.5 dwarf star BD+53$^circ$2790 and a slowly rotating neutron star. BD+53$^circ$2790 misled the astronomers showing itself ve