ترغب بنشر مسار تعليمي؟ اضغط هنا

The 2dF Galaxy Redshift Survey: Power-spectrum analysis of the final dataset and cosmological implications

291   0   0.0 ( 0 )
 نشر من قبل Carlton Baugh
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. Cole




اسأل ChatGPT حول البحث

We present a power spectrum analysis of the final 2dF Galaxy Redshift Survey, employing a direct Fourier method. The sample used comprises 221,414 galaxies with measured redshifts. We investigate in detail the modelling of the sample selection. A new angular mask is derived, based on revisions to the photometric calibration. The redshift selection function is determined by dividing the survey according to rest-frame colour, and deducing a self-consistent treatment of k-corrections and evolution for each population. The covariance matrix for the power-spectrum estimates is determined using two different approaches to the construction of mock surveys which are used to demonstrate that the input cosmological model can be correctly recovered. We are confident that the 2dFGRS power spectrum can be used to infer the matter content of the universe. On large scales, our estimated power spectrum shows evidence for the `baryon oscillations that are predicted in CDM models. Fitting to a CDM model, assuming a primordial $n_{s}=1$ spectrum, $h=0.72$ and negligible neutrino mass, the preferred parameters are $Omega_{M} h = 0.168 pm 0.016$ and a baryon fraction $Omega_{b} /Omega_{M} = 0.185pm0.046$ (1$sigma$ errors). The value of $Omega_{M} h$ is $1sigma$ lower than the $0.20 pm 0.03$ in our 2001 analysis of the partially complete 2dFGRS. This shift is largely due to the signal from the newly-sampled regions of space, rather than the refinements in the treatment of observational selection. This analysis therefore implies a density significantly below the standard $Omega_{M} =0.3$: in combination with CMB data from WMAP, we infer $Omega_{M} =0.231pm 0.021$. (Abridged.)

قيم البحث

اقرأ أيضاً

The 2dF Galaxy Redshift Survey (2dFGRS) has obtained spectra for 245591 sources, mainly galaxies, brighter than a nominal extinction-corrected magnitude limit of b_J=19.45. Reliable redshifts were measured for 221414 galaxies. The galaxies are select ed from the extended APM Galaxy Survey and cover an area of approximately 1500 square degrees in three regions: an NGP strip, an SGP strip and random fields scattered around the SGP strip. This paper describes the 2dFGRS final data release of 30 June 2003 and complements Colless et al. (2001), which described the survey and the initial 100k data release. The 2dFGRS database and full documentation are available on the WWW at http://www.mso.anu.edu.au/2dFGRS/
The 2dF Galaxy Redshift Survey has now measured in excess of 160000 galaxy redshifts. This paper presents the power spectrum of the galaxy distribution, calculated using a direct FFT-based technique. We argue that, within the k-space region 0.02<k<0. 15 h Mpc^-1, the shape of this spectrum should be close to that of the linear density perturbations convolved with the window function of the survey. This window function and its convolving effect on the power spectrum estimate are analyzed in detail. By convolving model spectra, we are able to fit the power-spectrum data and provide a measure of the matter content of the universe. Our results show that models containing baryon oscillations are mildly preferred over featureless power spectra. Analysis of the data yields 68% confidence limits on the total matter density times the Hubble parameter Omega_m h = 0.20 +/- 0.03, and the baryon fraction Omega_b/Omega_m = 0.15 +/- 0.07, assuming scale-invariant primordial fluctuations.
63 - Matthew Colless 2003
The 2dF Galaxy Redshift Survey (2dFGRS) has produced a three-dimensional map of the distribution of 221,000 galaxies covering 5% of the sky and reaching out to a redshift z=0.3. This is first map of the large-scale structure in the local Universe to probe a statistically representative volume, and provides direct evidence that the large-scale structure of the Universe grew through gravitational instability. Measurements of the correlation function and power spectrum of the galaxy distribution have provided precise measurements of the mean mass density of the Universe and the relative contributions of cold dark matter, baryons, and neutrinos. The survey has produced the first measurements of the galaxy bias parameter and its variation with galaxy luminosity and type. Joint analysis of the 2dFGRS and cosmic microwave background power spectra gives independent new estimates for the Hubble constant and the vacuum energy density, and constrains the equation of state of the vacuum.
We present the result of a decomposition of the 2dFGRS galaxy overdensity field into an orthonormal basis of spherical harmonics and spherical Bessel functions. Galaxies are expected to directly follow the bulk motion of the density field on large sc ales, so the absolute amplitude of the observed large-scale redshift-space distortions caused by this motion is expected to be independent of galaxy properties. By splitting the overdensity field into radial and angular components, we linearly model the observed distortion and obtain the cosmological constraint Omega_m^{0.6} sigma_8=0.46+/-0.06. The amplitude of the linear redshift-space distortions relative to the galaxy overdensity field is dependent on galaxy properties and, for L_* galaxies at redshift z=0, we measure beta(L_*,0)=0.58+/-0.08, and the amplitude of the overdensity fluctuations b(L_*,0) sigma_8=0.79+/-0.03, marginalising over the power spectrum shape parameters. Assuming a fixed power spectrum shape consistent with the full Fourier analysis produces very similar parameter constraints.
337 - P. J. Outram 2003
We present a power spectrum analysis of the final 2dF QSO Redshift Survey catalogue containing 22652 QSOs. Utilising the huge volume probed by the QSOs, we can accurately measure power out to scales of ~500Mpc and derive new constraints, at z~1.4, on the matter and baryonic contents of the Universe. Importantly, these new cosmological constraints are derived at an intermediate epoch between the CMB observations at z~1000, and local (z~0) studies of large-scale structure; the average QSO redshift corresponds to a look-back time of approximately two-thirds of the age of the Universe. We find that the amplitude of clustering of the QSOs at z~1.4 is similar to that of present day galaxies. The power spectra of the QSOs at high and low redshift are compared and we find little evidence for any evolution in the amplitude. Assuming a lambda cosmology to derive the comoving distances, r(z), to the QSOs, the power spectrum derived can be well described by a model with shape parameter Gamma=0.13+-0.02. If an Einstein-de Sitter model r(z) is instead assumed, a slightly higher value of Gamma=0.16+-0.03 is obtained. A comparison with the Hubble Volume LCDM simulation shows very good agreement over the whole range of scales considered. A standard (Omega_m=1) CDM model, however, predicts a much higher value of Gamma than is observed, and it is difficult to reconcile such a model with these data. We fit CDM model power spectra (assuming scale-invariant initial fluctuations), convolved with the survey window function, and corrected for redshift space distortions, and find that models with baryon oscillations are slightly preferred, with the baryon fraction Omega_b/Omega_m=0.18+-0.10. The overall shape of the power spectrum provides a strong constraint on Omega_m*h (where h is the Hubble parameter), with Omega_m*h=0.19+-0.05.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا