ﻻ يوجد ملخص باللغة العربية
We present the large-scale correlation function measured from a spectroscopic sample of 46,748 luminous red galaxies from the Sloan Digital Sky Survey. The survey region covers 0.72 h^{-3} Gpc^3 over 3816 square degrees and 0.16<z<0.47, making it the best sample yet for the study of large-scale structure. We find a well-detected peak in the correlation function at 100h^{-1} Mpc separation that is an excellent match to the predicted shape and location of the imprint of the recombination-epoch acoustic oscillations on the low-redshift clustering of matter. This detection demonstrates the linear growth of structure by gravitational instability between z=1000 and the present and confirms a firm prediction of the standard cosmological theory. The acoustic peak provides a standard ruler by which we can measure the ratio of the distances to z=0.35 and z=1089 to 4% fractional accuracy and the absolute distance to z=0.35 to 5% accuracy. From the overall shape of the correlation function, we measure the matter density Omega_mh^2 to 8% and find agreement with the value from cosmic microwave background (CMB) anisotropies. Independent of the constraints provided by the CMB acoustic scale, we find Omega_m = 0.273 +- 0.025 + 0.123 (1+w_0) + 0.137 Omega_K. Including the CMB acoustic scale, we find that the spatial curvature is Omega_K=-0.010+-0.009 if the dark energy is a cosmological constant. More generally, our results provide a measurement of cosmological distance, and hence an argument for dark energy, based on a geometric method with the same simple physics as the microwave background anisotropies. The standard cosmological model convincingly passes these new and robust tests of its fundamental properties.
We present the 3-point function xi_3 and Q_3=xi_3/xi_2^2 for a spectroscopic sample of luminous red galaxies (LRG) from SDSS DR6 & DR7. We find a strong (S/N$>$6) detection of $Q_3$ on scales of 55-125 Mpc/h, with a well defined peak around 105 Mpc/h
We analyse the large-scale angular correlation function (ACF) of the CMASS luminous galaxies (LGs), a photometric-redshift catalogue based on the Data Release 8 (DR8) of the Sloan Digital Sky Survey-III. This catalogue contains over $600 , , 000$ LGs
The 2-point angular correlation function $w(theta)$ (2PACF), where $theta$ is the angular separation between pairs of galaxies, provides the transversal Baryon Acoustic Oscillation (BAO) signal almost model-independently. In this paper we use 409,337
A new determination of the sound horizon scale in angular coordinates is presented. It makes use of ~ 0.6 x 10^6 Luminous Red Galaxies, selected from the Sloan Digital Sky Survey imaging data, with photometric redshifts. The analysis covers a redshif
The correlation function of the distribution of matter in the universe shows, at large scales, baryon acoustic oscillations, which were imprinted prior to recombination. This feature was first detected in the correlation function of the luminous red