ترغب بنشر مسار تعليمي؟ اضغط هنا

HST/ACS weak lensing analysis of the galaxy cluster RDCS 1252.9-2927 at z=1.24

151   0   0.0 ( 0 )
 نشر من قبل Marco Lombardi
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a weak lensing analysis of one of the most distant massive galaxy cluster known, RDCS 1252.9-2927 at z=1.24, using deep images from the Advanced Camera for Survey (ACS) on board the Hubble Space Telescope (HST). By taking advantage of the depth and of the angular resolution of the ACS images, we detect for the first time at z>1 a clear weak lensing signal in both the i (F775W) and z (F850LP) filters. We measure a 5-sigma signal in the i band and a 3-sigma signal in the shallower z band image. The two radial mass profiles are found to be in very good agreement with each other, and provide a measurement of the total mass of the cluster inside a 1Mpc radius of M(<1Mpc) = (8.0 +/- 1.3) x 10^14 M_odot in the current cosmological concordance model h =0.70, Omega_m=0.3, Omega_Lambda=0.7, assuming a redshift distribution of background galaxies as inferred from the Hubble Deep Fields surveys. A weak lensing signal is detected out to the boundary of our field (3 radius, corresponding to 1.5Mpc at the cluster redshift). We detect a small offset between the centroid of the weak lensing mass map and the brightest cluster galaxy, and we discuss the possible origin of this discrepancy. The cumulative weak lensing radial mass profile is found to be in good agreement with the X-ray mass estimate based on Chandr and XMM-Newton observations, at least out to R_500=0.5Mpc.

قيم البحث

اقرأ أيضاً

(Abridged) We report a discovery of possible large-scale structures around the RDCS J1252.9-2927 cluster at z=1.24 based on photometric redshifts. We carried out multi-band wide-field imaging with Suprime-Cam on the Subaru Telescope and WFCAM on the United Kingdom Infra-Red Telescope (UKIRT). The distribution of photo-z selected galaxies reveals clumpy structures surrounding the central cluster. We compare the observed structure with an X-ray map and find that two of the four plausible clumps show significant X-ray emissions and one with a marginal detection, which strongly suggest that they are dynamically bound systems. Following the discovery of the possible large-scale structure, we carried out deeper SOFI K_s-band imaging with New Technology Telescope on the four plausible clumps. We construct the optical-to-near-infrared colour-magnitude diagrams of the galaxies in the clumps, and find that the colour-magnitude relation (CMR) of the red galaxies in the clumps is sharply truncated below K_s=22. Interestingly, the main cluster shows a clear relation down to K_s=23 (Lidman et al. 2004). We suggest that galaxies follow the environment-dependent down-sizing evolution. Massive galaxies in high density environments first stop forming stars and become red. Less massive galaxies in less dense environments become red at later times. Based on a few assumptions, we predict that the brightest tip of the CMR appears at z~2.5.
We present a weak lensing study of the galaxy cluster IDCS J1426.5+3508 at $z=1.75$, which is the highest redshift strong lensing cluster known and the most distant cluster for which a weak lensing analysis has been undertaken. Using F160W, F814W, an d F606W observations with the Hubble Space Telescope, we detect tangential shear at $2sigma$ significance. Fitting a Navarro-Frenk-White mass profile to the shear with a theoretical median mass-concentration relation, we derive a mass $M_{200,mathrm{crit}}=2.3^{+2.1}_{-1.4}times10^{14}$ M$_{odot}$. This mass is consistent with previous mass estimates from the Sunyaev-Zeldovich (SZ) effect, X-ray, and strong lensing. The cluster lies on the local SZ-weak lensing mass scaling relation observed at low redshift, indicative of minimal evolution in this relation.
258 - Joana S. Santos 2009
XMMU J1229+0151 is a rich galaxy cluster with redshift z=0.975, that was serendipitously detected in X-rays within the scope of the XMM-Newton Distant Cluster Project. HST/ACS observations in the i775 and z850 passbands, as well as VLT/FORS2 spectros copy were further obtained, in addition to follow-up Near-Infrared (NIR) imaging in J- and Ks-bands with NTT/SOFI. We investigate the photometric, structural and spectral properties of the early-type galaxies in the high-redshift cluster XMMU J1229+0151. Source detection and aperture photometry are performed in the optical and NIR imaging. Galaxy morphology is inspected visually and by means of Sersic profile fitting to the 21 spectroscopically confirmed cluster members in the ACS field of view. The i775-z850 colour-magnitude relation (CMR) is derived with a method based on galaxy magnitudes obtained by fitting the surface brightness of the galaxies with Sersic models. The i775-z850 CMR of the spectroscopic members shows a very tight red-sequence with a zero point of 0.86+-0.04 mag and intrinsic scatter equal to 0.039 mag. The CMR obtained with the galaxy models has similar parameters. Stellar masses and formation ages of the cluster galaxies are derived by fitting the observed spectral energy distributions (SED) with models based on Bruzual & Charlot 2003. We obtain a star formation weighted age of 4.3 Gyr for a median mass of 7.4e10 Msun. Instead of an unambiguous brightest cluster galaxy (BCG), we find three bright galaxies with a similar z850 magnitude, which are, in addition, the most massive cluster members, with ~ 2e11 Msun. Our results strengthen the current evidence for a lack of significant evolution of the scatter and slope of the red-sequence out to z~1.
102 - Keiichi Umetsu 2020
Weak gravitational lensing of background galaxies provides a direct probe of the projected matter distribution in and around galaxy clusters. Here we present a self-contained pedagogical review of cluster--galaxy weak lensing, covering a range of top ics relevant to its cosmological and astrophysical applications. We begin by reviewing the theoretical foundations of gravitational lensing from first principles, with special attention to the basics and advanced techniques of weak gravitational lensing. We summarize and discuss key findings from recent cluster--galaxy weak-lensing studies on both observational and theoretical grounds, with a focus on cluster mass profiles, the concentration--mass relation, the splashback radius, and implications from extensive mass calibration efforts for cluster cosmology.
84 - Holger Israel 2009
The mass function of galaxy clusters at high redshifts is a particularly useful probe to learn about the history of structure formation and constrain cosmological parameters. We aim at deriving reliable masses for a high-redshift, high-luminosity sam ple of clusters of galaxies selected from the 400d survey of X-ray selected clusters. Here, we will focus on a particular object, CL0030+2618 at z=0.50 Using deep imaging in three passbands with the MEGACAM instrument at MMT, we show that MEGACAM is well-suited for measuring gravitational shear. We detect the weak lensing signal of CL0030+2618 at 5.8 sigma significance, using the aperture mass technique. Furthermore, we find significant tangential alignment of galaxies out to ~10 arcmin or >2r_200 distance from the cluster centre. The weak lensing centre of CL0030+2618 agrees with several X-ray measurements and the position of the brightest cluster galaxy. Finally, we infer a weak lensing virial mass of M_200=7.5 10^{14} M_sun for CL0030+2618. Despite complications by a tentative foreground galaxy group in the line of sight, the X-ray and weak lensing estimates for CL0030+2618 are in remarkable agreement. This study paves the way for the largest weak lensing survey of high-redshift galaxy clusters to date.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا