ترغب بنشر مسار تعليمي؟ اضغط هنا

Warm Molecular Gas Traced with CO J=7->6 in the Galaxys Central 2 Parsecs: Dynamical Heating of the Circumnuclear Disk

67   0   0.0 ( 0 )
 نشر من قبل Charles Bradford
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C.M. Bradford




اسأل ChatGPT حول البحث

We present an 11 arcsec resolution map of the central two parsecs of the Galaxy in the CO J =7->6 rotational transition. The CO emission shows rotation about Sgr A*, but also evidence for non-circular turbulent motion and a clumpy morphology. We combine our dataset with available CO measurements to model the physical conditions in the disk. We find that the molecular gas in the region is both warm and dense, with T~200-300 K, n_H2~50,000-70,000 cm^-3. The mass of warm molecular gas we measure in the central two parsecs is at least 2000 M_solar, about 20 times the UV-excited atomic gas mass, ruling out an UV heating scenario for the molecular material. We compare the available spectral tracers with theoretical models and conclude that molecular gas is heated with magneto-hydrodynamic shocks with v~10-20 kms and B~0.3-0.5 mG. Using the conditions derived with the CO analysis, we include the other important coolants--neutral oxygen and molecular hydrogen--to estimate the total cooling budget of the molecular material. We derive a mass to luminosity ratio of 2-3 M_solar/ L_solar, which is consistent with the total power dissipated via turbulent decay in 0.1 pc cells with v_rms~15 kms. These size and velocity scales are comparable to the observed clumping scale and the velocity dispersion. At this rate, the material near Sgr A* its dissipating its orbital energy on an orbital timescale, and cannot last for more than a few orbits. Our conclusions support a scenario in which the features near Sgr A* such as the CND and northern arm are generated by infalling clouds with low specific angular momentum.


قيم البحث

اقرأ أيضاً

We report observations of the CO J=7->6 transition toward the starburst nucleus of NGC 253. This is the highest-excitation CO measurement in this source to date, and allows an estimate of the molecular gas excitation conditions. Comparison of the CO line intensities with a large velocity gradient, escape probability model indicates that the bulk of the 2-5 x 10^7 solar masses of molecular gas in the central 180 pc is highly excited. A model with T ~ 120 K, n_H_2 ~ 4.5 x 10^4 cm^-3 is consistent with the observed CO intensities as well as the rotational H2 lines observed with ISO. The inferred mass of warm, dense molecular gas is 10--30 times the atomic gas mass as traced through its [CII] and [OI] line emission. This large mass ratio is inconsistent with photodissociation region models where the gas is heated by far-UV starlight. It is also not likely that the gas is heated by shocks in outflows or cloud-cloud collisions. We conclude that the best mechanism for heating the gas is cosmic rays, which provide a natural means of uniformly heating the full volume of molecular clouds. With the tremendous supernova rate in the nucleus of NGC 253, the CR heating rate is at least ~800 times greater than in the Galaxy, more than sufficient to match the cooling observed in the CO lines.
We present a 190-307 GHz broadband spectrum obtained with Z-Spec of NGC 1068 with new measurements of molecular rotational transitions. After combining our measurements with those previously published and considering the specific geometry of this Sey fert 2 galaxy, we conduct a multi-species Bayesian likelihood analysis of the density, temperature, and relative molecular abundances of HCN, HNC, CS, and HCO+. We find that these molecules trace warm (T > 100 K) gas of H2 number densities 10^4.2 - 10^4.9 cm^-3. Our models also place strong constraints on the column densities and relative abundances of these molecules, as well as on the total mass in the circumnuclear disk. Using the uniform calibration afforded by the broad Z-Spec bandpass, we compare our line ratios to X-ray dominated region (XDR) and photon-dominated region models. The majority of our line ratios are consistent with the XDR models at the densities indicated by the likelihood analysis, lending substantial support to the emerging interpretation that the energetics in the circumnuclear disk of NGC 1068 are dominated by accretion onto an active galactic nucleus.
66 - N. Neumayer 2007
We present two-dimensional gas-kinematic maps of the central region in Centaurus A. The adaptive optics (AO) assisted SINFONI data from the VLT have a resolution of 0.12 in K-band. The ionized gas species (Br_gamma, [FeII], [SiVI]) show a rotational pattern that is increasingly overlaid by non-rotational motion for higher excitation lines in direction of Cen As radio jet. The emission lines of molecular hydrogen (H_2) show regular rotation and no distortion due to the jet. The molecular gas seems to be well settled in the gravitational potential of the stars and the central supermassive black hole and we thus use it as a tracer to model the mass in the central +/-1.5. These are the first AO integral-field observations on the nucleus of Cen A, enabling us to study the regularity of the rotation around the black hole, well inside the radius of influence, and to determine the inclination angle of the gas disk in a robust way. The gas kinematics are best modeled through a tilted-ring model that describes the warped gas disk; its mean inclination angle is ~34deg and the mean position angle of the major axis is ~155deg. The best-fit black hole mass is M_BH~4.5x10^7 Msolar, based on a kinematically hot disk model where the velocity dispersion is included through the Jeans equation. This black hole mass estimate is somewhat lower than, but consistent with the mass values previously derived from ionized gas kinematics. It is also consistent with the stellar dynamical measurement from the same AO observations, which we present in a separate paper. It brings Cen A in agreement with the M_BH-sigma relation.
62 - A.B. Peck , 2004
We report new observations of the H_2O megamaser in the Seyfert 2 galaxy Mrk348. The line is redshifted by about 130 km s^-1 with respect to the systemic velocity, is extremely broad, with a FWHM of 130 km s^-1, and has no detectable high velocity co mponents within 1500 km s^-1 on either side of the observed line. The unusual line profile led us to suspect that this source, might belong to a class of megamaser galaxies in which the amplified emission is the result of an interaction between the radio jet and an encroaching molecular cloud, rather than occurring in a circumnuclear disk. Our initial VLBA observations show that the maser emission emanates entirely from a region <0.25 pc in extent, located toward a continuum component thought to be associated with the receding jet. The very high linewidth occurring on such small spatial scales and the rapid variability indicate that the H_2O emission is likely to arise from a shocked region at the interface between the energetic jet material and the molecular gas in the cloud where the jet is boring through. The orientation of the radio jets close to the plane of the sky also results in shocks with the preferred orientation for strong masers from our vantage point. Single-dish monitoring with the Effelsberg 100m telescope showed that the line and continuum emission flared on very similar timescales. The close temporal correlation between this activity in the maser emission and the continuum flare further suggest that the masing region and the continuum hotspots are nearly equidistant from the central engine and may be different manifestations of the same dynamical events. (abridged abstract)
103 - Ningyu Tang , Di Li , Carl Heiles 2016
Neither HI nor CO emission can reveal a significant quantity of so-called dark gas in the interstellar medium (ISM). It is considered that CO-dark molecular gas (DMG), the molecular gas with no or weak CO emission, dominates dark gas. We identified 3 6 DMG clouds with C$^+$ emission (data from Galactic Observations of Terahertz C+ (GOT C+) project) and HINSA features. Based on uncertainty analysis, optical depth of HI $taurm_{HI}$ of 1 is a reasonable value for most clouds. With the assumption of $taurm_{HI}=1$, these clouds were characterized by excitation temperatures in a range of 20 K to 92 K with a median value of 55 K and volume densities in the range of $6.2times10^1$ cm$^{-3}$ to $1.2times 10^3$ cm$^{-3}$ with a median value of $2.3times 10^2$ cm$^{-3}$. The fraction of DMG column density in the cloud ($frm_{DMG}$) decreases with increasing excitation temperature following an empirical relation $frm_{DMG}=-2.1times 10^{-3}T_(ex,tau_{HI}=1)$+1.0. The relation between $frm_{DMG}$ and total hydrogen column density $N_H$ is given by $frm_{DMG}$=$1.0-3.7times 10^{20}/N_H$. The values of $frm_{DMG}$ in the clouds of low extinction group ($Arm_V le 2.7$ mag) are consistent with the results of the time-dependent, chemical evolutionary model at the age of ~ 10 Myr. Our empirical relation cannot be explained by the chemical evolutionary model for clouds in the high extinction group ($Arm_V > 2.7$ mag). Compared to clouds in the low extinction group ($Arm_V le 2.7$ mag), clouds in the high extinction group ($Arm_V > 2.7$ mag) have comparable volume densities but excitation temperatures that are 1.5 times lower. Moreover, CO abundances in clouds of the high extinction group ($Arm_V > 2.7$ mag) are $6.6times 10^2$ times smaller than the canonical value in the Milky Way. #[Full version of abstract is shown in the text.]#
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا