ﻻ يوجد ملخص باللغة العربية
We present new Very Long Baseline Interferometry observations of the LINER galaxy NGC 4278 with a linear resolution of < 0.1 pc. Our radio data reveal a two sided structure, with symmetric S-shaped jets emerging from a flat spectrum core. By comparing the positions of the components in two epochs, we measure motions corresponding to apparent velocities < 0.2 c, and to ages in the range 8.3 - 65.8 years. From our measurements, we derive that NGC 4278 has mildly relativistic jets (beta aprox 0.75), closely aligned to the line-of-sight (2 deg < theta < 4 deg). We also present a flux density history for the source with data between 1972 and 2003. All these arguments indicates that the low power radio emission from NGC 4278 is emitted via the synchrotron process by relativistic particles accelerated by a supermassive black hole.
We present new Very Long Baseline Interferometry observations of the LINER galaxy NGC 4278. The observations were taken with the Very Long Baseline Array (VLBA) and a single antenna of the Very Large Array (VLA) at 5 GHz and 8.4 GHz and have a linear
In 2006 June, the obscured low luminosity active galactic nucleus in the nearby Seyfert 1.9 galaxy NGC 4258 was observed with Suzaku for ~ 100 ks. Utilizing the XIS and the HXD, the nucleus emission was detected over 2 to 40 keV range, with an unabso
Low-luminosity Active Galactic Nuclei, i.e. L_bol/L_edd ~ 10^-6 - 10^-3, constitute the bulk population of Active Galactic Nuclei (AGNs). Powerful jets, common in these objects, are a crucial source of feedback energy driving mass outflows into the h
The nearby low-luminosity active galactic nucleus (LLAGN) NGC 4258 has a weak radio continuum emission at the galactic center. Quasi-simultaneous multi-frequency observations using the Very Large Array (VLA) from 5 GHz (6 cm) to 22 GHz (1.3 cm) showe
The nearby low-luminosity active galactic nucleus (LLAGN) NGC 4258 has a weak radio continuum component at the galactic center. We investigate its radio spectral properties on the basis of our new observations using the Nobeyama Millimeter Array at 1