ﻻ يوجد ملخص باللغة العربية
We searched for X-ray bursts in XMM-Newton archival data of X-ray sources in M 31 globular clusters (GCs) and GC candidates. We detected two bursts simultaneously in EPIC pn and MOS detectors and some more candidates in EPIC pn. The energy distribution of the burst photons and the intrinsic luminosity during the peak of the bursts indicate that at least the strongest burst was a type I radius expansion burst. The bursts identify the sources as neutron star low mass X-ray binaries in M 31. The type I X-ray bursts in M 31 are the first detected outside the Milky Way and show that with the help of XMM-Newton X-ray bursts can be used to classify neutron star low mass X-ray binaries in Local Group galaxies.
Type I X-ray bursts are thermonuclear explosions that occur in the envelopes of accreting neutron stars. Detailed observations of these phenomena have prompted numerous studies in theoretical astrophysics and experimental nuclear physics since their
Analysis of observations with XMM-Newton have made a significant contribution to the study of Gamma-ray Burst (GRB) X-ray afterglows. The effective area, bandpass and resolution of the EPIC instrument permit the study of a wide variety of spectral fe
We report on the first deep X-ray survey with the XMM-Newton observatory during the performance verification phase. The field of the Lockman Hole, one of the best studied sky areas over a very wide range of wavelengths, has been observed. A total of
This paper explores the X-ray properties of `normal galaxies using a shallow XMM-Newton survey covering an area of ~1.5deg2. The X-ray survey overlaps with the 2dF Galaxy Redshift Survey. Compared with previous studies this has the advantage of high
Many distinct classes of high-energy variability have been observed in astrophysical sources, on a range of timescales. The widest range (spanning microseconds-decades) is found in accreting, stellar-mass compact objects, including neutron stars and