ﻻ يوجد ملخص باللغة العربية
We present the results of adaptive optics nulling interferometric observations of two Herbig Ae stars, AB Aur and V892 Tau. Our observations at 10.3 microns show resolved circumstellar emission from both sources. Further analysis of the AB Aur emission suggests that there is an inclined disk surrounding the star. The diameter of the disk is derived to be 24 to 30 AU with an inclination of 45 to 65 degrees from face-on, and a major-axis PA of 30 +/- 15 degrees (E of N). Differences in the physical characteristics between the mid-IR emission and emission at other wavelengths (near-IR and millimeter), found in previous studies, suggest a complex structure for AB Aurs circumstellar environment, which may not be explained by a disk alone. The similarity in the observed size of AB Aurs resolved emission and that of another Herbig Ae star, HD 100546, is likely coincidental, as their respective evolutionary states and spectral energy distributions suggest significantly different circumstellar environments.
We present the results of mid-infrared nulling interferometric observations of the main-sequence star alpha Lyr (Vega) using the 6.5 m MMT with its adaptive secondary mirror. From the observations at 10.6 microns, we find that there is no resolved em
We discuss the effect of atmospheric dispersion on the performance of a mid-infrared adaptive optics assisted instrument on an extremely large telescope (ELT). Dispersion and atmospheric chromaticity is generally considered to be negligible in this w
<Context>. We report on near-infrared (IR) observations of the three anomalous X-ray pulsars XTE J1810-197, 1RXS J1708-4009, 1E 1841-045 and the soft gamma-ray repeater SGR 1900+14, taken with the ESO-VLT, the Gemini, and the CFHT telescopes. <Aims>.
Millimeter-wavelength polarization measurements offer a promising method for probing the geometry of magnetic fields in circumstellar disks. Single dish observations and theoretical work have hinted that magnetic field geometries might be predominant
Luminous Infrared (IR) Galaxies (LIRGs) are an important cosmological class of galaxies as they are the main contributors to the co-moving star formation rate density of the universe at z=1. In this paper we present a GTO Spitzer IRS program aimed to