ترغب بنشر مسار تعليمي؟ اضغط هنا

The mass-metallicity relation at z~0.7

93   0   0.0 ( 0 )
 نشر من قبل Sandra Savaglio
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ISM metallicity and the stellar mass are examined in a sample of 66 galaxies at 0.4<z<1, selected from the Gemini Deep Deep Survey (GDDS) and the Canada-France Redshift Survey (CFRS). We observe a mass-metallicity relation similar to that seen in z~0.1 SDSS galaxies, but displaced towards higher masses and/or lower metallicities. Using this sample, and a small sample of z~2.3 LBGs, a redshift dependent mass-metallicity relation is proposed which describes the observed results.



قيم البحث

اقرأ أيضاً

159 - C. Maier 2014
(Abridged) The knowledge of the number and of the physical nature of low-metallicity massive galaxies is crucial for the determination and interpretation of the mass-metallicity relation (MZR). Using VLT-ISAAC near-infrared (NIR) spectroscopy of 39 z COSMOS z~0.7 galaxies, we have measured Halpha and [NII] emission line fluxes for galaxies with [OII], Hbeta and [OIII] available from VIMOS optical spectroscopy. The NIR spectroscopy enables us to break the degeneracy of the R23 method to derive unambiguously O/H gas metallicities, and also SFRs from extinction corrected Halpha. Using, as a benchmark, the position in the D4000 vs. [OIII]/Hbeta diagram of galaxies with reliable O/Hs from NIR spectroscopy, we were able to break the lower/upper branch R23 degeneracy of additional 900 zCOSMOS z~0.7 galaxies. Additionally, the Halpha-based SFR measurements were used to find the best SFR calibration based on [OII] for the zCOSMOS z~0.7 galaxies without Halpha measurements. We find a fraction of 19% of lower mass 9.5<logM/Msun<10.3 zCOSMOS galaxies which shows a larger evolution of the MZR relation, compared to higher mass galaxies, being more metal poor at a given mass by a factor of 2-3 compared to SDSS. This indicates that the low-mass MZR slope is getting steeper at z~0.7 compared to local galaxies. The existence of these metal-poor galaxies at z~0.7 can be interpreted as the chemical version of galaxy downsizing. Moreover, the sample of zCOSMOS galaxies shows direct evidence that SFR influences the MZR at these redshifts. The comparison of the measured metallicities for the zCOSMOS sample with the values expected for a non-evolving fundamental metallicity relation (FMR) shows broadly agreement, and reveals that also galaxies with lower metallicities and typically higher (specific) SFRs, as found in our zCOSMOS sample at z~0.7, are in agreement with the predictions of a non-evolving Z(M,SFR).
We present new accurate measurements of the physical properties of a statistically significant sample of 103 galaxies at z~2 using near-infrared spectroscopy taken as part of the 3D-HST survey. We derive redshifts, metallicities and star formation ra tes (SFRs) from the [OII], [OIII] and Hbeta nebular emission lines and exploit the multi-wavelength photometry available in CANDELS to measure stellar masses. We find the mass-metallicity relation (MZR) derived from our data to have the same trend as previous determinations in the range 0<z<3, with lower mass galaxies having lower metallicities. However we find an offset in the relation compared to the previous determination of the z~2 MZR by Erb et al. 2006b, who measure metallicities using the [NII]/Halpha ratio, with metallicities lower at a given mass. Incorporating our SFR information we find that our galaxies are offset from the Fundamental Metallicity Relation (FMR) by ~0.3 dex. We investigate the photoionization conditions and find that our galaxies are consistent with the elevated ionization parameter previously reported in high-redshift galaxies. Using the BPT diagram we argue that, if this is the case, metallicity indicators based on [NII] and Halpha may not be consistent with the ones obtained via oxygen lines and Hbeta. Using a recent determination of the theoretical evolution of the star forming sequence in the BPT diagram we convert our measured [OIII]/Hbeta line ratios to [NII]/Halpha ratios. From the [NII]/Halpha ratio we infer systematically higher metallicities in better agreement with the FMR. Our results thus suggest the evolution of the FMR previously reported at z~2-3 may be an artifact of the differential evolution in metallicity indicators, and caution against using locally calibrated metallicity relations at high redshift which do not account for evolution in the physical conditions of star-forming regions.
We present a stellar mass-metallicity relation at z~1.4 with an unprecedentedly large sample of ~340 star-forming galaxies obtained with FMOS on the Subaru Telescope. We observed K-band selected galaxies at 1.2 < z_{ph} < 1.6 in the SXDS/UDS fields w ith M_{*} > 10^{9.5} M_{sun}, and expected F(Halpha) > 5 times 10^{-17} erg s^{-1} cm^{-2}. Among the observed ~1200 targets, 343 objects show significant Halpha emission lines. The gas-phase metallicity is obtained from [NII]lambda 6584/Halpha line ratio, after excluding possible active galactic nuclei (AGNs). Due to the faintness of the [NII]lambda 6584 lines, we apply the stacking analysis and derive the mass-metallicity relation at z~1.4. Our results are compared to past results at different redshifts in the literature. The mass-metallicity relation at z~1.4 is located between those at z~0.8 and z~2.2; it is found that the metallicity increases with decreasing redshift from z~3 to z~0 at fixed stellar mass. Thanks to the large size of the sample, we can study the dependence of the mass-metallicity relation on various galaxy physical properties. The average metallicity from the stacked spectra is close to the local FMR in the higher metallicity part but >0.1 dex higher in metallicity than the FMR in the lower metallicity part. We find that galaxies with larger E(B-V), B-R, and R-H colours tend to show higher metallicity by ~0.05 dex at fixed stellar mass. We also find relatively clearer size dependence that objects with smaller half light radius tend to show higher metallicity by ~0.1 dex at fixed stellar mass, especially in the low mass part.
We measure the gas-phase oxygen abundances of ~3000 star-forming galaxies at z=0.05-0.75 using optical spectrophotometry from the AGN and Galaxy Evolution Survey (AGES), a spectroscopic survey of I_AB<20.45 galaxies over 7.9 deg^2 in the NOAO Deep Wi de Field Survey (NDWFS) Bootes field. We use state-of-the-art techniques to measure the nebular emission lines and stellar masses, and explore and quantify several potential sources of systematic error, including the choice of metallicity diagnostic, aperture bias, and contamination from unidentified active galactic nuclei (AGN). Combining volume-limited AGES samples in six independent redshift bins and ~75,000 star-forming galaxies with r_AB<17.6 at z=0.05-0.2 selected from the Sloan Digital Sky Survey (SDSS) that we analyze in the identical manner, we measure the evolution of the stellar mass-metallicity (M-Z) between z=0.05 and z=0.75. We find that at fixed stellar mass galaxies at z~0.7 have just 30%-60% the metal content of galaxies at the present epoch, where the uncertainty is dominated by the strong-line method used to measure the metallicity. Moreover, we find no statistically significant evidence that the M-Z relation evolves in a mass-dependent way for M=10^9.8-10^11 Msun star-forming galaxies. Thus, for this range of redshifts and stellar masses the M-Z relation simply shifts toward lower metallicity with increasing redshift without changing its shape.
A scaling relation has recently been suggested to combine the galaxy mass-metallicity (MZ) relation with metallicities of damped Lyman-alpha systems (DLAs) in quasar spectra. Based on this relation the stellar masses of the absorbing galaxies can be predicted. We test this prediction by measuring the stellar masses of 12 galaxies in confirmed DLA absorber - galaxy pairs in the redshift range 0.1<z<3.2. We find an excellent agreement between the predicted and measured stellar masses over three orders of magnitude, and we determine the average offset $langle C_{[M/H]} rangle$ = 0.44+/-0.10 between absorption and emission metallicities. We further test if $C_{[M/H]}$ could depend on the impact parameter and find a correlation at the 5.5sigma level. The impact parameter dependence of the metallicity corresponds to an average metallicity difference of -0.022+/-0.004 dex/kpc. By including this metallicity vs. impact parameter correlation in the prescription instead of $C_{[M/H]}$, the scatter reduces to 0.39 dex in log M*. We provide a prescription how to calculate the stellar mass (M*,DLA) of the galaxy when both the DLA metallicity and DLA galaxy impact parameter is known. We demonstrate that DLA galaxies follow the MZ relation for luminosity-selected galaxies at z=0.7 and z=2.2 when we include a correction for the correlation between impact parameter and metallicity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا