ترغب بنشر مسار تعليمي؟ اضغط هنا

The Centers of Early-Type Galaxies with HST. V. New WFPC2 Photometry

156   0   0.0 ( 0 )
 نشر من قبل Tod R. Lauer
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze HST+WFPC2 images of 77 early-type galaxies. Brightness profiles are classed into core or power-law forms. Cores are typically rounder than power-law galaxies. Nearly all power-laws with central ellipticity >=0.3 have stellar disks, implying that disks are present in power-laws with epsilon <0.3, but are not visible due to unfavorable geometry. A few low-luminosity core galaxies also have disks; these may be transition forms from power-laws. Cores and power-laws both have twisting isophotes at small radii. Core galaxies have somewhat weaker color gradients than power-laws. Nuclei are found in 29% of the cores and 60% of the power-laws. Nuclei are typically bluer than the surrounding galaxy. NGC 4073 and 4382 have central minima in their intrinsic starlight distributions; NGC 4382 resembles the double nucleus of M31. In general, the peak brightness location is coincident with the photocenter of the core to <1 pc. Five galaxies, however, have centers significantly displaced from their cores; these may be unresolved asymmetric double nuclei. Central dust is visible in half of the galaxies. The presence and strength of dust correlates with nuclear emission. The prevalence of dust and its morphology suggests that dust clouds form, settle to the center, and disappear repeatedly on ~10^8 yr timescales. We discuss the hypothesis that cores are created by the decay of a massive black hole binary. Apart from their brightness profiles, there are no strong differences between cores and power-laws that demand this scenario; however, the rounder shapes of cores, their lack of disks, and their reduced color gradients may be consistent with it.

قيم البحث

اقرأ أيضاً

We combine the results from several HST investigations of the central structure of early-type galaxies to generate a large sample of parameterized surface photometry. The studies included were those that used the Nuker law to characterize the inner l ight distributions of the galaxies. The sample comprises WFPC1 and WFPC2 V band observations published earlier by our group, R band WFPC2 photometry of Rest et al., NICMOS H band photometry by Ravindranath et al. and Quillen et al., and the BCG WFPC2 I band photometry of Laine et al. The distribution of the logarithmic slopes of the central profiles strongly affirms that the central structure of elliptical galaxies with Mv < -19 is bimodal, based on both parametric and non-parametric analysis. At the HST resolution limit, most galaxies are either power-law systems, which have steep cusps in surface brightness, or core systems, which have shallow cusps interior to a steeper envelope brightness distribution. A rapid transition between the two forms occurs over the luminosity range -22 < Mv < -20, with cores dominating at the highest luminosities, and power-laws at the lowest. There are a few intermediate systems that have both cusp slopes and total luminosities that fall within the core/power-law transition, but they are rare and do not fill in the overall bimodal distribution of cusp slopes. These results are inconsistent with the Ferrarese et al. Virgo Cluster Survey (VCS) analysis. However, using galaxies common to the VCS samples, we demonstrate that the VCS models of the cusps are either a poor match to the observations or consist of forms fitted to the galaxy envelopes and extrapolated inward to the HST resolution limit.
67 - Y.I. Byun 1996
We present a set of structural parameters for the central parts of 57 early-type galaxies observed with the Planetary Camera of the Hubble Space Telescope. These parameters are based on a new empirical law that successfully characterizes the centers of early type galaxies. This empirical law assumes that the surface brightness profile is a combination of two power laws with different slopes gamma and beta for the inner and outer regions. Conventional structural parameters such as core radius and central surface brightness are replaced by break radius r_b, where the transition between power-law slopes takes place, and surface brightness mu_b at that radius. An additional parameter alpha describes the sharpness of the break. The structural parameters are derived using a chi-squared minimization process applied to the mean surface brightness profiles. The resulting model profiles generally give very good agreement to the observed profiles out to the radius of 10 arcseconds imaged by the Planetary Camera. Exceptions include galaxies which depart from pure power-laws at large radius, those with strong nuclear components, and galaxies partly obscured by dust. The uncertainties in the derived parameters are estimated using Monte-Carlo simulations which test the stability of solutions in the face of photon noise and the effects of the deconvolution process. The covariance of the structural parameters is examined by computing contours of constant chi squared in multi-dimensional parameter space.
92 - K. D. Borne 1998
HST is used to study the power sources and the interaction-induced tidal disturbances within the most luminous galaxies in the local universe -- the Ultra-Luminous IR Galaxies (ULIRGs) -- through the use of I-band images with WFPC2 and H-band images with NICMOS. Such images are probing for the first time the fine-scale structures in the strong collision-disturbed morphologies of these rare and exotic galaxies.
We explore the application of Bayesian image analysis to infer the properties of an SDSS early-type galaxy sample including AGN. We use GALPHAT (Yoon et al. 2010) with a Bayes-factor model comparison to photometrically infer an AGN population and ver ify this using spectroscopic signatures. Our combined posterior sample for the SDSS sample reveals distinct low and high concentration modes after the point-source flux is modeled. This suggests that ETG parameters are intrinsically bimodal. The bimodal signature was weak when analyzed by GALFIT (Peng et al. 2002, 2010). This led us to create several ensembles of synthetic images to investigate the bias of inferred structural parameters and compare with GALFIT. GALPHAT inferences are less biased, especially for high-concentration profiles: GALPHAT Sersic index $n$, $r_{e}$ and MAG deviate from the true values by $6%$, $7.6%$ and $-0.03 ,mathrm{mag}$, respectively, while GALFIT deviates by $15%$, $22%$ and $-0.09$, mag, respectively. In addition, we explore the reliability for the photometric detection of AGN using Bayes factors. For our SDSS sample with $r_{e}ge 7.92,$arcsec, we correctly identify central point sources with $mathrm{Mag_{PS}}-mathrm{Mag_{Sersic}}le 5$ for $nle6$ and $mathrm{Mag_{PS}}-mathrm{Mag_{Sersic}}le 3$ for $n>6$. The magnitude range increases and classification error decreases with increasing resolution, suggesting that this approach will excel for upcoming high-resolution surveys. Future work will extend this to models that test hypotheses of galaxy evolution through the cosmic time.
103 - E. Di Carlo 2002
We report new results on the LMC globular cluster NGC 1866 obtained by analyzing F555W and F814W images from WFPC2@HST. On the basis of the CMD we derive information on the cluster distance and constraints on stellar evolution theory. Evidence of mass segregation are found in the cluster core.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا