ﻻ يوجد ملخص باللغة العربية
Preliminary results are presented from the CLEF hydrodynamics simulation, a large (N=2(428)^3 particles within a 200 Mpc/h comoving box) simulation of the LCDM cosmology that includes both radiative cooling and a simple model for galactic feedback. Specifically, we focus on the X-ray properties of the simulated clusters at z=0 and demonstrate a reasonable level of agreement between simulated and observed cluster scaling relations.
We present results from a study of the X-ray cluster population that forms within the CLEF cosmological hydrodynamics simulation, a large N-body/SPH simulation of the Lambda CDM cosmology with radiative cooling, star formation and feedback. The scale
Clusters of galaxies contain a hot gas, which emits in X-rays. X-ray telescopes such as XMM-Newton allow to study this plasma to obtain information on physical quantities of these objects. We present here some results on the total mass density distri
The abundance of massive galaxy clusters is a powerful probe of departures from General Relativity (GR) on cosmic scales. Despite current stringent constraints placed by stellar and galactic tests, on larger scales alternative theories of gravity suc
The review summarizes present and future applications of galaxy clusters to cosmology with emphasis on nearby X-ray clusters. The discussion includes the density of dark matter, the normalization of the matter power spectrum, neutrino masses, and esp
The IllustrisTNG project is a new suite of cosmological magneto-hydrodynamical simulations of galaxy formation performed with the Arepo code and updated models for feedback physics. Here we introduce the first two simulations of the series, TNG100 an