ترغب بنشر مسار تعليمي؟ اضغط هنا

Deconstructing NGC 7130

83   0   0.0 ( 0 )
 نشر من قبل N. A. Levenson
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Observations of the Seyfert 2 and starburst galaxy NGC 7130 with the Chandra X-ray Observatory illustrate that both of these phenomena contribute significantly to the galaxys detectable X-ray emission. The active galactic nucleus (AGN) is strongly obscured, buried beneath column density N_H > 10^{24} cm^{-2}, and it is most evident in a prominent Fe K alpha emission line with equivalent width greater than 1 keV. The AGN accounts for most (60%) of the observed X-rays at energy E > 2 keV, with the remainder due to spatially extended star formation. The soft X-ray emission is strong and predominantly thermal, on both small and large scales. We attribute the thermal emission to stellar processes. In total, the AGN is responsible for only one-third of the observed 0.5--10 keV luminosity of 3 x 10^{41} erg/s of this galaxy, and less than half of its bolometric luminosity. Starburst/AGN composite galaxies like NGC 7130 are truly common, and similar examples may contribute significantly to the high-energy cosmic X-ray background while remaining hidden at lower energies, especially if they are distant.

قيم البحث

اقرأ أيضاً

119 - J. H. Knapen , S. Comeron , 2018
We present the discovery of a small kinematically decoupled core of 0.2$^{primeprime}$ (60 pc) in radius as well as an outflow jet in the archetypical AGN-starburst composite galaxy NGC 7130 from integral field data obtained with the adaptive optics- assisted MUSE-NFM instrument on the VLT. Correcting the already good natural seeing at the time of our science verification observations with the four-laser GALACSI AO system, we reach an unprecedented spatial resolution at optical wavelengths of around 0.15$^{primeprime}$. We confirm the existence of star-forming knots arranged in a ring of 0.58$^{primeprime}$ (185 pc) in radius around the nucleus, previously observed from UV and optical Hubble Space Telescope and CO(6-5) ALMA imaging. We determine the position of the nucleus as the location of a peak in gas velocity dispersion. A plume of material extends towards the NE from the nucleus until at least the edge of our field of view at 2$^{primeprime}$ (640 pc) radius which we interpret as an outflow jet originating in the AGN. The plume is not visible morphologically, but is clearly characterised in our data by emission-line ratios characteristic of AGN emission, enhanced gas velocity dispersion, and distinct non-circular gas velocities. Its orientation is roughly perpendicular to the line of nodes of the rotating host galaxy disc. A circumnuclear area of positive and negative velocities of 0.2$^{primeprime}$ in radius indicates a tiny inner disc, which can only be seen after combining the integral field spectroscopic capabilities of MUSE with adaptive optics.
AGN are a key ingredient for understanding galactic evolution. AGN-driven outflows are one of the manifestations of feedback. The AO mode for MUSE at the VLT permits to study the innermost tens of parsecs of nearby AGN in the optical. We present a de tailed analysis of the ionised gas in the central regions of NGC 7130, an archetypical composite Seyfert and nuclear starburst galaxy. We achieve an angular resolution of 0.17$^{primeprime}$ (50 pc). We performed a multi-component analysis of the main ISM lines and identified nine kinematic components, six of which correspond to the outflow. The outflow is biconic and has velocities of a few $100,{rm km,s^{-1}}$ with respect to the disc. We decompose the approaching side of the outflow into a broad and a narrow component with typical velocity dispersions below and above $sim200,{rm km,s^{-1}}$, respectively. The blueshifted narrow component has substructure, in particular a collimated plume aligned with the radio jet, indicating that it may be jet-powered. The redshifted lobe is composed of two Narrow Components and a Broad Component. An additional redshifted component is seen outside the main outflow axis. Line ratio diagnostics indicate that the outflow gas in the main axis is AGN-powered whereas the off-axis component has LINER properties. The ionised gas mass outflow rate is $dot{M}=1.2pm0.7,M_{odot},{rm yr^{-1}}$ and the kinetic power is $dot{E}_{rm kin}=(2.7pm2.0)times10^{41},{rm erg,s^{-1}}$, which corresponds to $F_{rm kin}=0.12pm0.09%$ of the bolometric AGN power. The combination of high angular resolution integral field spectroscopy and a careful multi-component decomposition allows a uniquely detailed view of the outflow in NGC 7130, illustrating that AGN kinematics are more complex than traditionally derived from less sophisticated data and analyses. (abridged)
We use the exact-deconstruction prescription to lift various squashed-$S^3$ partition functions with supersymmetric-defect insertions to four-dimensional superconformal indices. Starting from three-dimensional circular-quiver theories with vortex-loo p-operator insertions, we recover the index of four-dimensional theories in the presence of codimension-two surface defects with (2,2) supersymmetry. The case of deconstruction with Wilson-loop insertions is discussed separately. We provide evidence that a certain prescription leads to the index of four-dimensional theories in the presence of surface defects with (4,0) supersymmetry. In addition, we deconstruct the index of four-dimensional gauge theories with codimension-one 1/2-BPS defects, starting from three-dimensional circular-quiver theories containing localised matter/gauge-field insertions at specific nodes. We also clarify certain calculational and conceptual points related to exact deconstruction.
74 - J.R. Anglin , J.P. Paz , 1996
The study of environmentally induced superselection and of the process of decoherence was originally motivated by the search for the emergence of classical behavior out of the quantum substrate, in the macroscopic limit. This limit, and other simplif ying assumptions, have allowed the derivation of several simple results characterizing the onset of environmentally induced superselection; but these results are increasingly often regarded as a complete phenomenological characterization of decoherence in any regime. This is not necessarily the case: The examples presented in this paper counteract this impression by violating several of the simple ``rules of thumb. This is relevant because decoherence is now beginning to be tested experimentally, and one may anticipate that, in at least some of the proposed applications (e.g., quantum computers), only the basic principle of ``monitoring by the environment will survive. The phenomenology of decoherence may turn out to be significantly different.
We use the technique of deconstruction to lift dualities from 2+1 to 3+1 dimensions. In this work we demonstrate the basic idea by deriving S-duality of maximally supersymmetric electromagnetism in 3+1 dimensions from mirror symmetry in 2+1. We also study the deconstruction of a non-supersymmetric duality in 3+1 dimensions using Abelian bosonization in 2+1 dimensions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا