ترغب بنشر مسار تعليمي؟ اضغط هنا

Chemical Evolution of Late-type Dwarf Galaxies - The windy starburst dwarfs NGC 1569 and NGC 1705

49   0   0.0 ( 0 )
 نشر من قبل Donatella Romano
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Thanks to the capabilities of modern telescopes and instrumentation, it is now possible to resolve single stars in external dwarf galaxies, provided they are bright enough. For galactic regions with deep enough photometry, detailed colour-magnitude diagrams are constructed, from which the star formation history and the initial mass function can be inferred by comparison with synthetic diagrams. Both the star formation history and the initial mass function are free parameters of galactic chemical evolution models. In this contribution we show how constraining them through high resolution photometry in principle allows us to better understand the mechanisms of dwarf galaxy formation and evolution.



قيم البحث

اقرأ أيضاً

As part of our study on the impact of violent star formation on the interstellar medium (ISM) of dwarf galaxies, we report observations of neutral atomic hydrogen (HI) in the post-starburst dwarf galaxy NGC 1569. High-resolution measurements with the VLA (B-, C- and D-array) are aimed at identifying morphological and kinematical signatures in the HI caused by the starburst. Our kinematical data suggest a huge hole in the HI distribution, probably due to the large number of supernovae explosions in the center of the galaxy over the past 20 Myr. Investigating the large-scale HI structure, we confirm the existence of a possible HI companion and a so-called HI bridge east of NGC 1569. Furthermore, we report the detection of additional low-intensity HI halo emission, which leads us to suggest a revised halo structure. Based on the new picture, we discuss the origin of the halo gas and possible implications for the evolution of the starburst in NGC 1569.
We present the results of an eight-year long monitoring of the radio emission from the Luminous Infrared Galaxy (LIRG) NGC 7469, using 8.4 GHz Very Large Array (VLA) observations at 0.3 resolution. Our monitoring shows that the late time evolution of the radio supernova SN 2000ft follows a decline very similar to that displayed at earlier times of its optically thin phase. The late time radio emission of SN 2000ft is therefore still being powered by its interaction with the presupernova stellar wind, and not with the interstellar medium (ISM). Indeed, the ram pressure of the presupernova wind is rho_w v_w^2 approx 7.6E-9 dyn/cm^2, at a supernova age of approximately 2127 days, which is significantly larger than the expected pressure of the ISM around SN 2000ft. At this age, the SN shock has reached a distance r_{sh approx 0.06 pc, and our observations are probing the interaction of the SN with dense material that was ejected by the presupernova star about 5820 years prior to its explosion. From our VLA monitoring, we estimate that the swept-up mass by the supernova shock after about six years of expansion is approx 0.29 M_sun, assuming an average expansion speed of the supernova of 10000 km/s. We also searched for recently exploded core-collapse supernovae in our VLA images. Apart from SN 2000ft (S_ u approx 1760 microJy at its peak, corresponding to 1.1E28 erg/s/Hz, we found no evidence for any other radio supernova (RSN) more luminous than approx 6.0E26 erg/s/Hz, which suggests that no other Type IIn SN has exploded since 2000 in the circumnuclear starburst of NGC 7469.
165 - A. Pasquali 2011
We used the near-IR imager/spectrograph LUCIFER mounted on the Large Binocular Telescope (LBT) to image, with sub-arcsec seeing, the local dwarf starburst NGC 1569 in the JHK bands and HeI 1.08 micron, [FeII] 1.64 micron and Brgamma narrow-band filte rs. We obtained high-quality spatial maps of HeI, [FeII] and Brgamma emission across the galaxy, and used them together with HST/ACS images of NGC 1569 in the Halpha filter to derive the two-dimensional spatial map of the dust extinction and surface star formation rate density. We show that dust extinction is rather patchy and, on average, higher in the North-West (NW) portion of the galaxy [E_g(B-V) = 0.71 mag] than in the South-East [E_g(B-V) = 0.57 mag]. Similarly, the surface density of star formation rate peaks in the NW region of NGC 1569, reaching a value of about 4 x 10^-6 M_sun yr^-1 pc^-2. The total star formation rate as estimated from the integrated, dereddened Halpha luminosity is about 0.4 M_sun yr^-1, and the total supernova rate from the integrated, dereddened [FeII] luminosity is about 0.005 yr^-1 (assuming a distance of 3.36 Mpc). The azimuthally averaged [FeII]/Brgamma flux ratio is larger at the edges of the central, gas-deficient cavities (encompassing the super star clusters A and B) and in the galaxy outskirts. If we interpret this line ratio as the ratio between the average past star formation (as traced by supernovae) and on-going activity (represented by OB stars able to ionize the interstellar medium), it would then indicate that star formation has been quenched within the central cavities and lately triggered in a ring around them. The number of ionizing hydrogen and helium photons as computed from the integrated, dereddened Halpha and HeI luminosities suggests that the latest burst of star formation occurred about 4 Myr ago and produced new stars with a total mass of ~1.8 x 10^6 M_sun. [Abridged]
139 - Max Spolaor 2008
We present a possible star formation and chemical evolutionary history for two early-type galaxies NGC 1407 and NGC 1400. They are the two brightest galaxies of the NGC 1407 (or Eridanus-A) group, one of the 60 groups studied as part of the Group Evo lution Multi-wavelength Study (GEMS). Our analysis is based on new high signal-to-noise spatially resolved integrated spectra obtained at the ESO 3.6m telescope, out to 0.6 (NGC 1407) and 1.3 (NGC 1400) effective radii. Using Lick/IDS indices we estimate luminosity-weighted ages, metallicities and $alpha$-element abundance ratios. Colour radial distributions from HST/ACS and Subaru Suprime-Cam multi-band wide-field imaging are compared to colours predicted from spectroscopically determinated ages and metallicities using single stellar population models. The galaxies formed over half of their mass in a single short-lived burst of star formation (> 100 M(sun)/year) at redshift z>5. This likely involved an outside-in mechanism with supernova-driven galactic winds, as suggested by the flatness of the alpha-element radial profiles and the strong negative metallicity gradients. Our results support the predictions of the revised version of the monolithic collapse model for galaxy formation and evolution. We speculate that, since formation the galaxies have evolved quiescently and that we are witnessing the first infall of NGC 1400 in the group.
Ground-based surveys have mapped the stellar outskirts of Local Group galaxies in unprecedented detail, but extending this work to other galaxies is necessary to overcome stochastic variations in evolutionary history and provide more stringent constr aints on cosmological galaxy formation models. As part of our continuing program of ultra-deep imagery of galaxies beyond the Local Group, we present a wide-field analysis of the isolated late-type spiral NGC2403 using data obtained with Suprime-Cam on Subaru. The survey reaches a maximum projected radius of 30 kpc or deprojected radius of R_dp~60 kpc. The colour-magnitude diagram reaches 1.5 mag below the tip of the metal-poor red giant branch (RGB) at a completeness rate > 50% for R_dp >12 kpc. Using the combination of diffuse light photometry and resolved star counts, we are able to trace the radial surface brightness (SB) profile over a much larger range of radii and surface brightness than is possible with either technique alone. The exponential disc as traced by RGB stars dominates the SB profile out to >8 disc scale-lengths, or R_dp~18 kpc, and reaches a V-band SB of 29 mag per sq. arcsec. Beyond this radius, we find evidence for an extended structural component with a significantly flatter SB profile than the inner disc and which we trace to R_dp~40 kpc and ~32 mag per sq. arcsec. This component can be fit with a power-law index of ~3, has an axial ratio consistent with that of the inner disc and has a V-band luminosity of 1-7% that of the whole galaxy. At R_dp~20 - 30 kpc, we estimate a peak metallicity [M/H]= -1.0+/-0.3. Although the extant data are unable to discriminate between stellar halo or thick disc interpretations of this component, our results support the notion that faint, extended stellar structures are a common feature of all disc galaxies, even isolated, low-mass systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا