ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic helicity and cosmological magnetic field

107   0   0.0 ( 0 )
 نشر من قبل Victor Semikoz
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The magnetic helicity has paramount significance in nonlinear saturation of galactic dynamo. We argue that the magnetic helicity conservation is violated at the lepton stage in the evolution of early Universe. As a result, a cosmological magnetic field which can be a seed for the galactic dynamo obtains from the beginning a substantial magnetic helicity which has to be taken into account in the magnetic helicity balance at the later stage of galactic dynamo.

قيم البحث

اقرأ أيضاً

The helicity of a magnetic field is a fundamental property that is conserved in ideal MHD. It can be explored in the stellar context by mapping large-scale magnetic fields across stellar surfaces using Zeeman-Doppler imaging. A recent study of 51 sta rs in the mass range 0.1-1.34 M$_odot$ showed that the photospheric magnetic helicity density follows a single power law when plotted against the toroidal field energy, but splits into two branches when plotted against the poloidal field energy. These two branches divide stars above and below $sim$ 0.5 M$_odot$. We present here a novel method of visualising the helicity density in terms of the linkage of the toroidal and poloidal fields that are mapped across the stellar surface. This approach allows us to classify the field linkages that provide the helicity density for stars of different masses and rotation rates. We find that stars on the lower-mass branch tend to have toroidal fields that are non-axisymmetric and so link through regions of positive and negative poloidal field. A lower-mass star may have the same helicity density as a higher-mass star, despite having a stronger poloidal field. Lower-mass stars are therefore less efficient at generating large-scale helicity.
TeV blazars offer an exciting prospect for discovering cosmological magnetic fields and for probing high energy processes, including CP violation, in the early universe. We propose a method for reconstructing both the non-helical and the helical magn etic field correlators using observations of cascade photons from TeV blazars.
Plasma relaxation in the presence of an initially braided magnetic field can lead to self-organization into relaxed states that retain non-trivial magnetic structure. These relaxed states may be in conflict with the linear force-free fields predicted by the classical Taylor theory, and remain to be fully understood. Here, we study how the individual field line helicities evolve during such a relaxation, and show that they provide new insights into the relaxation process. The line helicities are computed for numerical resistive-magnetohydrodynamic simulations of a relaxing braided magnetic field with line-tied boundary conditions, where the relaxed state is known to be non-Taylor. Firstly, our computations confirm recent analytical predictions that line helicity will be predominantly redistributed within the domain, rather than annihilated. Secondly, we show that self-organization into a relaxed state with two discrete flux tubes may be predicted from the initial line helicity distribution. Thirdly, for this set of line-tied simulations we observe that the sub-structure within each of the final tubes is a state of uniform line helicity. This uniformization of line helicity is consistent with Taylor theory applied to each tube individually. However, it is striking that the line helicity becomes significantly more uniform than the force-free parameter.
We present a brief overview on recent developments of theory and phenomenology for novel many-body phenomena related to the chirality and magnetic field, with an emphasis on their experimental implications and possible detection in relativistic nuclear collisions.
71 - Tanmay Vachaspati 2020
A variety of observations impose upper limits at the nano Gauss level on magnetic fields that are coherent on inter-galactic scales while blazar observations indicate a lower bound $sim 10^{-16}$ Gauss. Such magnetic fields can play an important astr ophysical role, for example at cosmic recombination and during structure formation, and also provide crucial information for particle physics in the early universe. Magnetic fields with significant energy density could have been produced at the electroweak phase transition. The evolution and survival of magnetic fields produced on sub-horizon scales in the early universe, however, depends on the magnetic helicity which is related to violation of symmetries in fundamental particle interactions. The generation of magnetic helicity requires new CP violating interactions that can be tested by accelerator experiments via decay channels of the Higgs particle.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا