ترغب بنشر مسار تعليمي؟ اضغط هنا

High Resolution Spectroscopy of the high galactic latitude RV Tauri star CE Virginis

96   0   0.0 ( 0 )
 نشر من قبل Kameswara Rao
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Analysis of the surface composition of the suspected cool RV Tauri star CE Vir shows no systematic trend in depletions of elements with respect to condensation temperature. However, there is a significant depletion of the elements with respect to the first ionization potential of the element. The derived Li abundance of log $epsilon$ (Li) = 1.5$pm$0.2 indicates production of Li in the star. Near infrared colours indicate sporadic dust formation close to the photosphere.

قيم البحث

اقرأ أيضاً

The first high-resolution optical spectra of QY Sge are presented and discussed. Menzies & Whitelock (1988) on the basis of photometry and low-resolution spectra suggested that this G0I supergiant was obscured by dust and seen only by scattered light from a circumstellar reflection nebula. The new spectra confirm and extend this picture. Photospheric lines are unusually broad indicating scattering of photons from dust in the stellar wind. Presence of very broad Na D emission lines is confirmed. Sharp emission lines from low levels of abundant neutral metal atoms are reported for the first time. An abundance analysis of photospheric lines shows that the stellar atmosphere is of approximately solar composition but with highly condensible (e.g., Sc and Ti) elements depleted by factors of 5 to 10.
59 - C. Argiroffi 2004
We present an analysis of the Chandra High Energy Transmission Grating Spectrometer observation of the rapidly rotating P_(rot)=0.94 d post T Tauri (~20 Myr old) star PZ Telescopii, in the Tucana association. Using two different methods we have deriv ed the coronal emission measure distribution, em(T), and chemical abundances. The em(T) peaks at log T = 6.9 and exhibits a significant emission measure at temperatures log T > 7. The coronal abundances are generally ~0.5 times the solar photospheric values that are presumed fairly representative of the composition of the underlying star. A minimum in abundance is seen at a first ionization potential (FIP) of 7-8 eV, with evidence for higher abundances at both lower and higher FIP, similar to patterns seen in other active stars. From an analysis of the He-like triplet of Mg XI we have estimated electron densities of ~10^(12)-10^(13) cm^(-3). All the coronal properties found for PZ Tel are much more similar to those of AB Dor, which is slightly older than PZ Tel, than to those of the younger T Tauri star TW Hya. These results support earlier conclusions that the soft X-ray emission of TW Hya is likely dominated by accretion activity rather than by a magnetically-heated corona. Our results also suggest that the coronae of pre-main sequence stars rapidly become similar to those of older active main-sequence stars soon after the accretion stage has ended.
In this chapter we review the young stars and molecular clouds found at high Galactic latitudes $(|b| ge 30^circ)$. These are mostly associated with two large-scale structures on the sky, the Gould Belt and the Taurus star formation region, and a han dful of molecular clouds including MBM 12 and MBM 20 which, as a population, consist of the nearest star formation sites to our Sun. There are also a few young stars that are found in apparent isolation far from any molecular cloud. The high latitude clouds are primarily translucent molecular clouds and diffuse Galactic cirrus with the majority of them seen at high latitude simply due to their proximity to the Sun. The rare exceptions are those, like the Draco and other intermediate or high velocity clouds, found significantly above or below the Galactic plane. We review the processes that result in star formation within these low density and extraplanar environments as well as the mechanisms for production of isolated T Tauri stars. We present and discuss the known high-latitude stellar nurseries and young stellar objects.
PASIPHAE (the Polar-Areas Stellar Imaging in Polarization High-Accuracy Experiment) is an optopolarimetric survey aiming to measure the linear polarization from millions of stars, and use these to create a three-dimensional tomographic map of the mag netic field threading dust clouds within the Milky Way. This map will provide invaluable information for future CMB B-mode experiments searching for inflationary gravitational waves, providing unique information regarding line-of-sight integration effects. Optical polarization observations of a large number of stars at known distances, tracing the same dust that emits polarized microwaves, can map the magnetic field between them. The Gaia mission is measuring distances to a billion stars, providing an opportunity to produce a tomographic map of Galactic magnetic field directions, using optical polarization of starlight. Such a map will not only boost CMB polarization foreground removal, but it will also have a profound impact in a wide range of astrophysical research, including interstellar medium physics, high-energy astrophysics, and evolution of the Galaxy. Taking advantage of the novel technology implemented in our high-accuracy Wide-Area Linear Optical Polarimeters (WALOPs) currently under construction at IUCAA, India, we will engage in a large-scale optopolarimetric program that can meet this challenge: a survey of both northern and southern Galactic polar regions targeted by CMB experiments, covering over 10,000 square degrees, which will measure linear optical polarization of over 360 stars per square degree (over 3.5 million stars, a 1000-fold increase over the state of the art). The survey will be conducted concurrently from the South African Astronomical Observatory in Sutherland, South Africa in the southern hemisphere, and the Skinakas Observatory in Crete, Greece, in the north.
364 - M. Kun , T. Prusti , S. Nikolic 2004
We identified new pre-main sequence stars in the region of high-latitude molecular clouds associated with the reflection nebula IC2118, around l = 208 degr and b = -27 degr. The stars were selected as T Tauri candidates in objective prism plates obta ined with the Schmidt telescope of Konkoly Observatory. Results of spectroscopic follow-up observations, carried out with the FLAIR spectrograph installed on the UK Schmidt and with ALFOSC on Nordic Optical Telescope, are presented in this paper. Based on spectral types, presence of emission lines and lithium absorption line, we identified five classical T Tauri stars and a candidate weak-line T Tauri star projected on the molecular clouds, as well as two candidate pre-main sequence stars outside the nebulous region. Using the near infrared magnitudes obtained from the 2MASS All Sky Catalog. we determined the masses and ages of these stars. We found that the five classical T Tauri stars projected on the clouds are physically related to them, whereas the other stars are probably background objects. Adopting a distance of 210 pc for IC2118 (Kun et al. 2001) and using Palla & Stahlers (1999) evolutionary tracks we derived an average age of 2.5 million yrs and a mass interval of 0.4--1.0 M_sun for the members of the IC2118 association.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا