ترغب بنشر مسار تعليمي؟ اضغط هنا

Did Open Solar Magnetic Field Increase during the Last 100 Years: A Reanalysis of Geomagnetic Activity

65   0   0.0 ( 0 )
 نشر من قبل Kalevi Mursula
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Long-term geomagnetic activity presented by the aa index has been used to show that the heliospheric magnetic field has more than doubled during the last 100 years. However, serious concern has been raised on the long-term consistency of the aa index and on the centennial rise of the solar magnetic field. Here we reanalyze geomagnetic activity during the last 100 years by calculating the recently suggested IHV (Inter-Hour Variability) index as a measure of local geomagnetic activity for seven stations. We find that local geomagnetic activity at all stations follows the same qualitative long-term pattern: an increase from early 1900s to 1960, a dramatic dropout in 1960s and a (mostly weaker) increase thereafter. Moreover, at all stations, the activity at the end of the 20th century has a higher average level than at the beginning of the century. This agrees with the result based on the aa index that global geomagnetic activity, and thereby, the open solar magnetic field has indeed increased during the last 100 years. However, quantitatively, the estimated centennial increase varies greatly from one station to another. We find that the relative increase is higher at the high-latitude stations and lower at the low and mid-latitude stations. These differences may indicate that the fraction of solar wind disturbances leading to only moderate geomagnetic activity has increased during the studied time interval. We also show that the IHV index needs to be corrected for the long-term change of the daily curve, and calculate the corrected IHV values. Most dramatically, we find the centennial increase in global geomagnetic activity was considerably smaller, only about one half of that depicted by the aa index.

قيم البحث

اقرأ أيضاً

68 - Robert W. Johnson 2009
The continuous wavelet transform may be enhanced by deconvolution with the wavelet response function. After correcting for the cone-of-influence, the power spectral density of the solar magnetic record as given by the derectified yearly sunspot numbe r is calculated, revealing a spectrum of odd harmonics of the fundamental Hale cycle, and the integrated instant power is compared to a reconstruction of global temperature in a normalized scatter plot displaying a positive correlation after the turn of the twentieth century. Comparison of the spectrum with that obtained from the Central England Temperature record suggests that some features are shared while others are not, and the scatter plot again indicates a possible correlation.
Data from the PAMELA satellite experiment were used to measure the geomagnetic cutoff for high-energy ($gtrsim$ 80 MeV) protons during the solar particle events on 2006 December 13 and 14. The variations of the cutoff latitude as a function of rigidi ty were studied on relatively short timescales, corresponding to single spacecraft orbits (about 94 minutes). Estimated cutoff values were cross-checked with those obtained by means of a trajectory tracing approach based on dynamical empirical modeling of the Earths magnetosphere. We find significant variations in the cutoff latitude, with a maximum suppression of about 6 deg for $sim$80 MeV protons during the main phase of the storm. The observed reduction in the geomagnetic shielding and its temporal evolution were compared with the changes in the magnetosphere configuration, investigating the role of IMF, solar wind and geomagnetic (Kp, Dst and Sym-H indexes) variables and their correlation with PAMELA cutoff results.
The Maunder Minimum (1645-1715) is currently considered the only grand minimum within telescopic sunspot observations since 1610. During this epoch, the Sun was extremely quiet and unusually free from sunspots. However, despite reduced frequency, can didate aurorae were reported in the mid-European sector during this period and have been associated with occurrences of interplanetary coronal mass ejections (ICMEs), whereas some of them have been identified as misinterpretations. Here, we have analysed reports of candidate aurorae on 1 June 1680 with simultaneous observations in mid-Europe, and compared their descriptions with visual accounts of early modern aurorae. Most contemporary sunspot drawings from 22, 24, and 27 May 1680 have shown that this apparent sunspot may have been a source of ICMEs, which caused the reported candidate aurorae. On the other hand, its intensity estimate shows that the magnetic storm during this candidate aurora was probably within the capability of the storms derived from the corotating interaction region (CIR). Therefore, we accommodate both ICMEs and CIRs as their possible origin. This interpretation is probably applicable to the candidate aurorae in the often-cited Hungarian catalogue, on the basis of the reconstructed margin of their equatorward auroral boundary. Moreover, this catalogue itself has clarified that the considerable candidates during the MM were probably misinterpretations. Therefore, frequency of the auroral visibility in Hungary was probably lower than previously considered and agree more with the generally slow solar wind in the existing reconstructions, whereas sporadic occurrences of sunspots and coronal holes still caused occasional geomagnetic storms.
268 - M. Scherf , H. Lammer 2021
It is not yet entirely clear whether Mars began as a warm and wet planet that evolved towards the present-day cold and dry body or if it always was cold and dry with just some sporadic episodes of liquid water on its surface. An important clue into t his question can be gained by studying the earliest evolution of the Martian atmosphere and whether it was dense and stable to maintain a warm and wet climate or tenuous and susceptible to strong atmospheric escape. We discuss relevant aspects for the evolution and stability of a potential early Martian atmosphere. This contains the solar EUV flux evolution, the formation timescale and volatile inventory of the planet including volcanic degassing, impact delivery and removal, the loss of a catastrophically outgassed steam atmosphere, atmosphere-surface interactions, and thermal and non-thermal escape processes affecting any secondary atmosphere. While early non-thermal escape at Mars before 4 billion years ago (Ga) is poorly understood, particularly in view of its ancient intrinsic magnetic field, research on thermal escape processes indicate that volatile delivery and volcanic degassing cannot counterbalance the strong thermal escape. Therefore, a catastrophically outgassed steam atmosphere of several bars of CO2 and H2O, or CO and H2 for reduced conditions, could have been lost within just a few million years (Myr). Thereafter, Mars likely could not build up a dense secondary atmosphere during its first ~400 Myr but might only have possessed an atmosphere sporadically during events of strong volcanic degassing, potentially also including SO2. This indicates that before ~4.1 Ga Mars indeed might have been cold and dry. A denser CO2- or CO-dominated atmosphere, however, might have built up afterwards but must have been lost later-on due to non-thermal escape processes and sequestration into the ground.
In our earlier study of this series (Park et al. 2020, Paper I), we examined the hemispheric sign preference (HSP) of magnetic helicity flux $dH/dt$ across photospheric surfaces of 4802 samples of 1105 unique active regions (ARs) observed during sola r cycle 24. Here, we investigate any association of the HSP, expressed as a degree of compliance, with flaring activity, analyzing the same set of $dH/dt$ estimates as used in Paper I. The AR samples under investigation are assigned to heliographic regions (HRs) defined in the Carrington longitude-latitude plane with a grid spacing of 45$^circ$ in longitude and 15$^circ$ in latitude. For AR samples in each of the defined HRs, we calculate the degree of HSP compliance and the average soft X-ray flare index. The strongest flaring activity is found to be in one distinctive HR with an extremely low HSP compliance of 41% as compared to the mean and standard deviation of 62% and 7%, respectively, over all HRs. This sole HR shows an anti-HSP (i.e., less than 50%) and includes the highly flare-productive AR NOAA 12673, however this AR is not uniquely responsible for the HRs low HSP. We also find that all HRs with the highest flaring activity are located in the southern hemisphere, and they tend to have lower degrees of HSP compliance. These findings point to the presence of localized regions of the convection zone with enhanced turbulence, imparting a greater magnetic complexity and a higher flaring rate to some rising magnetic flux tubes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا