ﻻ يوجد ملخص باللغة العربية
The time evolution of giant lobe-dominated radio galaxies (with projected linear size D>1 Mpc if H_{0}=50 km/s/Mpc and q_{0}=0.5 is analysed on the basis of dynamical evolution of the entire FRII-type population. Two basic physical parameters, namely the jet power Q_{0} and central density of the galaxy nucleus rho0 are derived for a sample of giants with synchrotron ages reliably determined, and compared with the relevant parameters in a comparison sample of normal-size sources consisting of 3C, B2, and other sources. Having the apparent radio luminosity P and linear size D of each sample source, Q_{0} and rho_{0} are obtained by fitting the dynamical model of Kaiser et al. (1997). We find that: (i) there is not a unique factor governing the source size; they are old sources with temperate jet power (Q_{0}) evolved in a relatively low-density environment (rho_{0}). The size is dependent, in order of decreasing partial correlation coefficients, on age; then on Q_{0}; next on rho_{0}. (ii) A self-similar expansion of the sources cocoon seems to be feasible if the power supplied by the jets is a few orders of magnitude above the minimum-energy value. In other cases the expansion can only initially be self-similar; a departure from self-similarity for large and old sources is justified by observational data of giant sources. (iii) An apparent increase of the lowest internal pressure value observed within the largest sources cocoon with redshift is obscured by the intrinsic dependence of their size on age and the age on redshift, which hinders us from making definite conclusions about a cosmological evolution of intergalactic medium (IGM) pressure.
The time evolution of giant (D>1 Mpc) lobe-dominated galaxies is analysed on the basis of dynamical evolution of the entire FRII-type population.
The time evolution of `fiducial radio sources derived from fitting the dynamical model of Kaiser et al. (1997) is compared with the observational data for the `clan sources found in the sample of giant and normal-size FRII-type sources published Pape
In this paper we show normalized differential source counts n(S) at 408 MHz and 1.4 GHz of radio sources separately for FRI and FRII classes with extended and compact morphologies. The maps from the FIRST, NVSS, and WENSS surveys are used to define t
We present an analytical model for the cosmological evolution of the FRII source population. Based on an earlier model for the intrinsic radio luminosity - linear size evolution of these objects, we construct theoretical source samples. The source di
We present low-frequency observations with the Giant Metrewave Radio Telescope (GMRT) of a sample of giant radio sources (GRSs), and high-frequency observations of three of these sources with the Very Large Array (VLA). From multifrequency observatio