ترغب بنشر مسار تعليمي؟ اضغط هنا

The On-Orbit Performance of the Galaxy Evolution Explorer

48   0   0.0 ( 0 )
 نشر من قبل Patrick Morrissey
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the first year on-orbit performance results for the Galaxy Evolution Explorer (GALEX), a NASA Small Explorer that is performing a survey of the sky in two ultraviolet bands. The instrument comprises a 50 cm diameter modified Ritchey-Chretien telescope with a 1.25 degree field of view, selectable imaging and objective grism spectroscopic modes, and an innovative optical system with a thin-film multilayer dichroic beam splitter that enables simultaneous imaging by a pair of photon counting, microchannel plate, delay line readout detectors. Initial measurements demonstrate that GALEX is performing well, meeting its requirements for resolution, efficiency, astrometry, bandpass definition and survey sensitivity.

قيم البحث

اقرأ أيضاً

Launch of the Far Ultraviolet Spectroscopic Explorer (FUSE) has been followed by an extensive period of calibration and characterization as part of the preparation for normal satellite operations. Major tasks carried out during this period include in itial coalignment, focusing and characterization of the four instrument channels, and a preliminary measurement of the resolution and throughput performance of the instrument. We describe the results from this test program, and present preliminary estimates of the on-orbit performance of the FUSE satellite based on a combination of this data and prelaunch laboratory measurements.
We describe the calibration status and data products pertaining to the GR2 and GR3 data releases of the Galaxy Evolution Explorer (GALEX). These releases have identical pipeline calibrations that are significantly improved over the GR1 data release. GALEX continues to survey the sky in the Far Ultraviolet (FUV, ~154 nm) and Near Ultraviolet (NUV, ~232 nm) bands, providing simultaneous imaging with a pair of photon counting, microchannel plate, delay line readout detectors. These 1.25 degree field-of-view detectors are well-suited to ultraviolet observations because of their excellent red rejection and negligible background. A dithered mode of observing and photon list output pose complex requirements on the data processing pipeline, entangling detector calibrations and aspect reconstruction algorithms. Recent improvements have achieved photometric repeatability of 0.05 and 0.03 mAB in the FUV and NUV, respectively. We have detected a long term drift of order 1% FUV and 6% NUV over the mission. Astrometric precision is of order 0.5 RMS in both bands. In this paper we provide the GALEX user with a broad overview of the calibration issues likely to be confronted in the current release. Improvements are likely as the GALEX mission continues into an extended phase with a healthy instrument, no consumables, and increased opportunities for guest investigations.
The DArk Matter Particle Explorer (DAMPE), a satellite-based cosmic ray and gamma-ray detector, was launched on December 17, 2015, and began its on-orbit operation on December 24, 2015. In this work we document the on-orbit calibration procedures use d by DAMPE and report the calibration results of the Plastic Scintillator strip Detector (PSD), the Silicon-Tungsten tracKer-converter (STK), the BGO imaging calorimeter (BGO), and the Neutron Detector (NUD). The results are obtained using Galactic cosmic rays, bright known GeV gamma-ray sources, and charge injection into the front-end electronics of each sub-detector. The determination of the boundary of the South Atlantic Anomaly (SAA), the measurement of the live time, and the alignments of the detectors are also introduced. The calibration results demonstrate the stability of the detectors in almost two years of the on-orbit operation.
We give an overview of the Galaxy Evolution Explorer (GALEX), a NASA Explorer Mission launched on April 28, 2003. GALEX is performing the first space UV sky-survey, including imaging and grism surveys in two bands (1350-1750 Angstroms and 1750-2750 A ngstroms). The surveys include an all-sky imaging survey (m[AB] ~ 20.5), a medium imaging survey of 1000 square degrees (m[AB] ~ 23), a deep imaging survey of 100 square degrees (m[AB] ~ 25), and a nearby galaxy survey. Spectroscopic grism surveys (R=100-200) are underway with various depths and sky coverage. Many targets overlap existing or planned surveys. We will use the measured UV properties of local galaxies, along with corollary observations, to calibrate the UV-global star formation rate relationship in local galaxies. We will apply this calibration to distant galaxies discovered in the deep imaging and spectroscopic surveys to map the history of star formation in the universe over the redshift range 0 < z < 1.5, and probe the physical drivers of star formation in galaxies. The GALEX mission includes a Guest Investigator program supporting the wide variety of programs made possible by the first UV sky survey.
The European Space Agencys Gaia satellite was launched into orbit around L2 in December 2013 with a payload containing 106 large-format scientific CCDs. The primary goal of the mission is to repeatedly obtain high-precision astrometric and photometri c measurements of one thousand million stars over the course of five years. The scientific value of the down-linked data, and the operation of the onboard autonomous detection chain, relies on the high performance of the detectors. As Gaia slowly rotates and scans the sky, the CCDs are continuously operated in a mode where the line clock rate and the satellite rotation spin-rate are in synchronisation. Nominal mission operations began in July 2014 and the first data release is being prepared for release at the end of Summer 2016. In this paper we present an overview of the focal plane, the detector system, and strategies for on-orbit performance monitoring of the system. This is followed by a presentation of the performance results based on analysis of data acquired during a two-year window beginning at payload switch-on. Results for parameters such as readout noise and electronic offset behaviour are presented and we pay particular attention to the effects of the L2 radiation environment on the devices. The radiation-induced degradation in the charge transfer efficiency (CTE) in the (parallel) scan direction is clearly diagnosed; however, an extrapolation shows that charge transfer inefficiency (CTI) effects at end of mission will be approximately an order of magnitude less than predicted pre-flight. It is shown that the CTI in the serial register (horizontal direction) is still dominated by the traps inherent to the manufacturing process and that the radiation-induced degradation so far is only a few per cent. Finally, we summarise some of the detector effects discovered on-orbit which are still being investigated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا