ترغب بنشر مسار تعليمي؟ اضغط هنا

The internal dynamical equilibrium of HII regions: a statistical study

195   0   0.0 ( 0 )
 نشر من قبل Monica Relano Pastor
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an analysis of the integrated Halpha emission line profiles for the HII region population of the spiral galaxies NGC 1530, NGC 6951 and NGC 3359. We show that 70% of the line profiles show two or three Gaussian components. The relations between the Halpha luminosity and non-thermal line width for the HII regions of the three galaxies are studied and compared with the relation found taken all the HII regions of the three galaxies as a single distribution. A clearer envelope in non-thermal line width is found when only those HII regions with non-thermal line width bigger than 13kms are considered. The linear fit for the envelope is logL=36.8+2.0*log(sigma). The masses of the HII regions on the envelope using the virial theorem and the mass estimates from the Halpha luminosity are comparable, which offers evidence that the HII regions on the envelope are virialized systems, while the remaining regions, the majority, are not in virial equilibrium.



قيم البحث

اقرأ أيضاً

Context. The derived physical parameters for young HII regions are normally determined assuming the emission region to be optically thin. However, this assumption is unlikely to hold for young HII regions such as hyper-compact HII(HCHII) and ultra-co mpact HII(UCHII) regions and leads to the underestimation of their properties. This can be overcome by fitting the SEDs over a wide range of radio frequencies. Aims. The two primary goals of this study are (1) to determine the physical properties of young HII regions from radio SEDs in the search for potential HCHII regions, and (2) to use these physical properties to investigate their evolution. Method. We used the Karl G. Jansky Very Large Array (VLA) to observe the X-band and K-band with angular resolutions of ~1.7 and ~0.7, respectively, toward 114 HII regions with rising-spectra between 1-5 GHz. We complement our observations with VLA archival data and construct SEDs in the range of 1-26 GHz and model them assuming an ionization-bounded HII region with uniform density. Results. Our sample has a mean electron density of ne=1.6E4cm^{-3}, diameter diam=0.14pc, and emission measure EM = 1.9E7pc*cm^{-6}. We identify 16 HCHII region candidates and 8 intermediate objects between the classes of HCHII and UCHII regions. The ne, diam, and EM change as expected, but the Lyman continuum flux is relatively constant over time. We find that about 67% of Lyman-continuum photons are absorbed by dust within these HII regions and the dust absorption fraction tends to be more significant for more compact and younger HII regions. Conclusion. Young HII regions are commonly located in dusty clumps; HCHII regions and intermediate objects are often associated with various masers, outflows, broad radio recombination lines, and extended green objects, and the accretion at the two stages tends to be quickly reduced or halted.
To show the importance of high-spatial resolution observations of HII regions when compared with observations obtained with larger apertures such as ISO, we present mid-infrared spectra of two Magellanic Cloud HII regions, N88A and N160A. We obtained mid-infrared (8-13 um), long-slit spectra with TIMMI2 on the ESO 3.6m telescope. These are combined with archival spectra obtained with the Infrared Spectrograph (IRS) onboard the Spitzer Space Telescope, and are compared with the low-spatial resolution ISO-SWS data. An inventory of the spectra in terms of atomic fine-structure lines and molecular bands is presented. Concerning N88A, an isolated HII region with no adjacent infrared sources, the observations indicate that the line fluxes observed by ISO-SWS and Spitzer-IRS come exclusively from the compact HII region of about 3 arcsec in diameter. This is not the case for N160A, which has a more complex morphology. We have spectroscopically isolated for the first time the individual contributions of the three components of N160A, two high-excitation blobs, A1 and A2, and the young stellar object N160A-IR. In addition, extended [SIV] emission is observed with TIMMI2 and is most likely associated with the central star cluster located between A1 and A2. We show the value of these high-spatial resolution data in determining source characteristics, such as the degree of ionization of each high-excitation blob or the bolometric luminosity of the YSO. This luminosity is about one order of magnitude lower than previously estimated. For each high-excitation blob, we also determine the electron density and the elemental abundances of Ne, S, and Ar.
Winds from young massive stars contribute a large amount of energy to their host molecular clouds. This has consequences for the dynamics and observable structure of star-forming clouds. In this paper, we present radiative magnetohydrodynamic simulat ions of turbulent molecular clouds that form individual stars of 30, 60 and 120 solar masses emitting winds and ultraviolet radiation following realistic stellar evolution tracks. We find that winds contribute to the total radial momentum carried by the expanding nebula around the star at 10 % of the level of photoionisation feedback, and have only a small effect on the radial expansion of the nebula. Radiation pressure is largely negligible in the systems studied here. The 3D geometry and evolution of wind bubbles is highly aspherical and chaotic, characterised by fast-moving chimneys and thermally-driven plumes. These plumes can sometimes become disconnected from the stellar source due to dense gas flows in the cloud. Our results compare favourably with the findings of relevant simulations, analytic models and observations in the literature while demonstrating the need for full 3D simulations including stellar winds. However, more targeted simulations are needed to better understand results from observational studies.
199 - Sherry C. C. Yeh 2013
The emission line ratios [OIII]5007/H-beta and [NII]6584/H-alpha have been adopted as an empirical way to distinguish between the fundamentally different mechanisms of ionization in emission-line galaxies. However, detailed interpretation of these di agnostics requires calculations of the internal structure of the emitting HII regions, and these calculations depend on the assumptions one makes about the relative importance of radiation pressure and stellar winds. In this paper we construct a grid of quasi-static HII region models to explore how choices about these parameters alter HII regions emission line ratios. We find that, when radiation pressure is included in our models, HII regions reach a saturation point beyond which further increases in the luminosity of the driving stars does not produce any further increase in effective ionization parameter, and thus does not yield any further alteration in an HII regions line ratio. We also show that, if stellar winds are assumed to be strong, the maximum possible ionization parameter is quite low. As a result of this effect, it is inconsistent to simultaneously assume that HII regions are wind-blown bubbles and that they have high ionization parameters; some popular HII region models suffer from this inconsistency. Our work in this paper provides a foundation for a companion paper in which we embed the model grids we compute here within a population synthesis code that enables us to compute the integrated line emission from galactic populations of HII regions.
213 - V. Charmandaris 2008
We present a study of the mid-infrared properties and dust content of a sample of 27 HII ``blobs, a rare class of compact HII regions in the Magellanic Clouds. A unique feature of this sample is that even though these HII regions are of high and low excitation they have nearly the same physical sizes ~1.5-3 pc. We base our analysis on archival 3-8 microns infrared imagery obtained with the Infrared Array Camera (IRAC) on board the Spitzer Space Telescope. We find that despite their youth, sub-solar metallicity and varied degrees of excitation, the mid-infrared colors of these regions are similar to those of typical HII regions. Higher excitation ``blobs (HEBs) display stronger 8 micron emission and redder colors than their low-excitation counterparts (LEBs).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا