ترغب بنشر مسار تعليمي؟ اضغط هنا

Distribution of Spectral Lags in Gamma Ray Bursts

109   0   0.0 ( 0 )
 نشر من قبل Li Chen
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using the data acquired in the Time To Spill (TTS) mode for long gamma-ray bursts (GRBs) collected by the Burst and Transient Source Experiment on board the Compton Gamma Ray Observatory (BATSE/CGRO), we have carefully measured spectral lags in time between the low (25-55 keV) and high (110-320 keV) energy bands of individual pulses contained in 64 multi-peak GRBs. We find that the temporal lead by higher-energy gamma-ray photons (i.e., positive lags) is the norm in this selected sample set of long GRBs. While relatively few in number, some pulses of several long GRBs do show negative lags. This distribution of spectral lags in long GRBs is in contrast to that in short GRBs. This apparent difference poses challenges and constraints on the physical mechanism(s) of producing long and short GRBs. The relation between the pulse peak count rates and the spectral lags is also examined. Observationally, there seems to be no clear evidence for systematic spectral lag-luminosity connection for pulses within a given long GRB.

قيم البحث

اقرأ أيضاً

Some recent studies exposed rather strong statistical evidence of in-vacuo-dispersion-like spectral lags for gamma-ray bursts (GRBs), a linear correlation between time of observation and energy of GRB particles. Those results focused on testing in-va cuo dispersion for the most energetic GRB particles, and in particular only included photons with energy at emission greater than 40 GeV. We here extend the window of the statistical analysis down to 5 GeV and find results that are consistent with what had been previously noticed at higher energies.
In this paper, we restudy the spectral lag features of short bright gamma-ray bursts (T90 < 2.6s) with a BATSE time-tagged event (TTE) sample including 65 single pulse bursts. We also make an investigation on the characteristics of ratios between the spectral lag and the full width at half maximum ($FWHM$) of the pulses, called relative spectral lags (RSLs). We draw the conclusions as follows: 1) Spectral lags of short GRBs are normally distributed and concentrated on around the value of 0.014 with 40 percent of them having negative lags. With K-S test, we find the lag distribution is identical with a normal one caused by white noises, which indicates the lags of the vast majority of short bursts are so small that they are negligible as Norris et al. have suggested.
The distribution of GRB durations is bimodal, but there is little additional evidence to support the division of GRBs into short and long classes. Based on simple hardness ratios, several studies have shown a tendency for longer GRBs to have softer e nergy spectra. Using a database of standard model fits to BATSE GRBs, we compare the distributions of spectral parameters for short and long bursts. Our preliminary results show that the average spectral break energy differs discontinuously between short and long burst classes, but within each class shows only a weak dependence on burst duration.
86 - I. Horvath , B. G. Toth 2016
Decades ago two classes of gamma-ray bursts were identified and delineated as having durations shorter and longer than about 2 s. Subsequently indications also supported the existence of a third class. Using maximum likelihood estimation we analyze t he duration distribution of 888 Swift BAT bursts observed before October 2015. Fitting three log-normal functions to the duration distribution of the bursts provides a better fit than two log-normal distributions, with 99.9999% significance. Similarly to earlier results, we found that a fourth component is not needed. The relative frequencies of the distribution of the groups are 8% for short, 35% for intermediate and 57% for long bursts which correspond to our previous results. We analyse the redshift distribution for the 269 GRBs of the 888 GRBs with known redshift. We find no evidence for the previously suggested difference between the long and intermediate GRBs redshift distribution. The observed redshift distribution of the 20 short GRBs differs with high significance from the distributions of the other groups.
We explain the results of Yu et al. (2015b) of the novel sharpness angle measurement to a large number of spectra obtained from the Fermi gamma-ray burst monitor. The sharpness angle is compared to the values obtained from various representative emis sion models: blackbody, single-electron synchrotron, synchrotron emission from a Maxwellian or power-law electron distribution. It is found that more than 91% of the high temporally and spectrally resolved spectra are inconsistent with any kind of optically thin synchrotron emission model alone. It is also found that the limiting case, a single temperature Maxwellian synchrotron function, can only contribute up to 58+23 -18% of the peak flux. These results show that even the sharpest but non-realistic case, the single-electron synchrotron function, cannot explain a large fraction of the observed spectra. Since any combination of physically possible synchrotron spectra added together will always further broaden the spectrum, emission mechanisms other than optically thin synchrotron radiation are likely required in a full explanation of the spectral peaks or breaks of the GRB prompt emission phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا