ترغب بنشر مسار تعليمي؟ اضغط هنا

The Afterglow of Massive Black Hole Coalescence

55   0   0.0 ( 0 )
 نشر من قبل Milos Milosavljevic
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The final merger of a pair of massive black holes in a galactic nucleus is compelled by gravitational radiation. Gravitational waves from the mergers of black holes of masses (10^5-10^7)(1+z)^{-1} Msun at redshifts of 1-20 will be readily detectable by the Laser Interferometer Space Antenna (LISA), but an electromagnetic afterglow would be helpful in pinpointing the source and its redshift. Long before the merger, the binary hollows out any surrounding gas and shrinks slowly compared to the viscous timescale of a circumbinary disk. The inner gas disk is truncated at the radius where gravitational torque from the binary balances the viscous torque, and accretion onto the black holes is diminished. Initially, the inner truncation radius is able to follow the shrinking binary inward. But eventually the gravitational radiation timescale becomes shorter than the viscous timescale in the disk, leading to a merged black hole surrounded by a hollow disk of gas. We show that the subsequent viscous evolution of the hollow, radiation-pressure dominated disk will create a ~10^{43.5}(M/10^6Msun) ergs s^{-1} X-ray source on a timescale ~7(1+z)(M/10^6Msun)^{1.32} yr. This justifies follow-up monitoring of gravitational wave events with next-generation X-ray observatories. Analysis of the detailed light curve of these afterglows will yield new insights into the subtle physics of accretion onto massive black holes.

قيم البحث

اقرأ أيضاً

In this paper we propose the model that the coalescence of primordial black holes (PBHs) binaries with equal mass $M sim 10^{28}$g can emit luminous gigahertz (GHz) radio transient, which may be candidate sources for the observed fast radio bursts (F RBs), if at least one black hole holds appropriate amount of net electric charge $Q$. Using a dimensionless quantity for the charge $q = Q/sqrt{G}M$, our analyses infer that $qsim O(10^{-4.5})$ can explain the FRBs with released energy of order $O(10^{40}) {rm ergs}$. With the current sample of FRBs and assuming a distribution of charge $phi(q)$ for all PBHs, we can deduce that its form is proportional to $q^{-3.0pm0.1}$ for $qgeq 7.2times10^{-5}$ if PBHs are sources of the observed FRBs. Furthermore, with the proposed hypothetical scenario and by estimating the local event rate of FRBs $sim 2.6 times 10^3 {rm Gpc}^{-3} {rm yr}^{-1}$, one derives a lower bound for the fraction of PBHs (at the mass of $10^{28}$g) against that of matter $f_{rm PBH}(10^{28}{rm g})$ $gtrsim 10^{-5}$ needed to explain the rate. With this inspiring estimate, we expect that future observations of FRBs can help to falsify their physical origins from the PBH binaries coalescences. In the future, the gravitational waves produced by mergers of small black holes can be detected by high frequency gravitational wave detectors. We believe that this work would be a useful addition to the current literature on multimessenger astronomy and cosmology.
We report the observation of gravitational waves from a binary-black-hole coalescence during the first two weeks of LIGOs and Virgos third observing run. The signal was recorded on April 12, 2019 at 05:30:44 UTC with a network signal-to-noise ratio o f 19. The binary is different from observations during the first two observing runs most notably due to its asymmetric masses: a ~30 solar mass black hole merged with a ~8 solar mass black hole companion. The more massive black hole rotated with a dimensionless spin magnitude between 0.22 and 0.60 (90% probability). Asymmetric systems are predicted to emit gravitational waves with stronger contributions from higher multipoles, and indeed we find strong evidence for gravitational radiation beyond the leading quadrupolar order in the observed signal. A suite of tests performed on GW190412 indicates consistency with Einsteins general theory of relativity. While the mass ratio of this system differs from all previous detections, we show that it is consistent with the population model of stellar binary black holes inferred from the first two observing runs.
On June 8, 2017 at 02:01:16.49 UTC, a gravitational-wave signal from the merger of two stellar-mass black holes was observed by the two Advanced LIGO detectors with a network signal-to-noise ratio of 13. This system is the lightest black hole binary so far observed, with component masses $12^{+7}_{-2},M_odot$ and $7^{+2}_{-2},M_odot$ (90% credible intervals). These lie in the range of measured black hole masses in low-mass X-ray binaries, thus allowing us to compare black holes detected through gravitational waves with electromagnetic observations. The sources luminosity distance is $340^{+140}_{-140}$ Mpc, corresponding to redshift $0.07^{+0.03}_{-0.03}$. We verify that the signal waveform is consistent with the predictions of general relativity.
The next two decades are expected to open the door to the first coincident detections of electromagnetic (EM) and gravitational wave (GW) signatures associated with massive black hole (MBH) binaries heading for coalescence. These detections will laun ch a new era of multimessenger astrophysics by expanding this growing field to the low-frequency GW regime and will provide unprecedented understanding of the evolution of MBHs and galaxies. They will also constitute fundamentally new probes of cosmology and would enable unique tests of gravity. The aim of this Living Review is to provide an introduction to this research topic by presenting a summary of key findings, physical processes and ideas pertaining to EM counterparts to MBH mergers as they are known at the time of this writing. We review current observational evidence for close MBH binaries, discuss relevant physical processes and timescales, and summarize the possible EM counterparts to GWs in the precursor, coalescence, and afterglow stages of a MBH merger. We also describe open questions and discuss future prospects in this dynamic and quick paced research area.
Although supermassive black holes (SMBHs) correlate well with their host galaxies, there is an emerging view that outliers exist. Henize 2-10, NGC 4889, and NGC1277 are examples of SMBHs at least an order of magnitude more massive than their host gal axy suggests. The dynamical effects of such ultramassive central black holes is unclear. Here, we perform direct N-body simulations of mergers of galactic nuclei where one black hole is ultramassive to study the evolution of the remnant and the black hole dynamics in this extreme regime. We find that the merger remnant is axisymmetric near the center, while near the large SMBH influence radius, the galaxy is triaxial. The SMBH separation shrinks rapidly due to dynamical friction, and quickly forms a binary black hole; if we scale our model to the most massive estimate for the NGC1277 black hole, for example, the timescale for the SMBH separation to shrink from nearly a kiloparsec to less than a parsec is roughly 10 Myr. By the time the SMBHs form a hard binary, gravitational wave emission dominates, and the black holes coalesce in a mere few Myr. Curiously, these extremely massive binaries appear to nearly bypass the 3-body scattering evolutionary phase. Our study suggests that in this extreme case, SMBH coalescence is governed by dynamical friction followed nearly directly by gravitational wave emission, resulting in an rapid and efficient SMBH coalescence timescale. We discuss the implications for gravitational wave event rates and hypervelocity star production.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا