ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmological Lepton Asymmetry, Primordial Nucleosynthesis, and Sterile Neutrinos

325   0   0.0 ( 0 )
 نشر من قبل George M. Fuller
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study post weak decoupling coherent active-sterile and active-active matter-enhanced neutrino flavor transformation in the early universe. We show that flavor conversion efficiency at Mikheyev-Smirnov-Wolfenstein resonances is likely to be high (adiabatic evolution) for relevant neutrino parameters and energies. However, we point out that these resonances cannot sweep smoothly and continuously with the expansion of the universe. We show how neutrino flavor conversion in this way can leave both the active and sterile neutrinos with non-thermal energy spectra, and how, in turn, these distorted energy spectra can affect the neutron-to-proton ratio, primordial nucleosynthesis, and cosmological mass/closure constraints on sterile neutrinos. We demonstrate that the existence of a light sterile neutrino which mixes with active neutrinos can change fundamentally the relationship between the cosmological lepton numbers and the primordial nucleosynthesis He-4 yield.

قيم البحث

اقرأ أيضاً

We study primordial nucleosynthesis abundance yields for assumed ranges of cosmological lepton numbers, sterile neutrino mass-squared differences and active-sterile vacuum mixing angles. We fix the baryon-to-photon ratio at the value derived from the cosmic microwave background (CMB) data and then calculate the deviation of the 2H, 4He, and 7Li abundance yields from those expected in the zero lepton number(s), no-new-neutrino-physics case. We conclude that high precision (< 5% error) measurements of the primordial 2H abundance from, e.g., QSO absorption line observations coupled with high precision (< 1% error) baryon density measurements from the CMB could have the power to either: (1) reveal or rule out the existence of a light sterile neutrino if the sign of the cosmological lepton number is known; or (2) place strong constraints on lepton numbers, sterile neutrino mixing properties and resonance sweep physics. Similar conclusions would hold if the primordial 4He abundance could be determined to better than 10%.
For the first time the antineutrino spectrum formed as a result of neutron and tritium decays during the epoch of primordial nucleosynthesis is calculated. This spectrum is a non-thermal increase in addition to the standard cosmic neutrino background (C$ u$B) whose thermal spectrum was formed before the beginning of primordial nucleosynthesis. For energy larger than $10^{-2},$eV the calculated non-thermal antineutrino flux exceeds the C$ u$B spectrum and there are no other comparable sources of antineutrino in this range. The observations of these antineutrinos will allow us to look directly at the very early Universe and non-equilibrium processes taken place before, during, and some time after primordial nucleosynthesis.
134 - Ninetta Saviano 2014
Short-baseline neutrino anomalies suggest the existence of low-mass ( m sim O(1)~eV) sterile neutrinos u_s. These would be efficiently produced in the early universe by oscillations with active neutrino species, leading to a thermal population of th e sterile states seemingly incompatible with cosmological observations. In order to relieve this tension it has been recently speculated that new secret interactions among sterile neutrinos, mediated by a massive gauge boson X (with M_X << M_W), can inhibit or suppress the sterile neutrino thermalization, due to the production of a large matter potential term. We note however, that they also generate strong collisional terms in the sterile neutrino sector that induce an efficient sterile neutrino production after a resonance in matter is encountered, increasing their contribution to the number of relativistic particle species N_ eff. Moreover, for values of the parameters of the u_s- u_s interaction for which the resonance takes place at temperature Tlesssim few MeV, significant distortions are produced in the electron (anti)neutrino spectra, altering the abundance of light element in Big Bang Nucleosynthesis (BBN). Using the present determination of $^4$He and deuterium primordial abundances we determine the BBN constraints on the model parameters. We find that $^2$H/H density ratio exclude much of the parameter space if one assume a baryon density at the best fit value of Planck experiment, Omega_B h^2= 0.02207, while bounds become weaker for a higher Omega_B h^2=0.02261, the 95 % C.L. upper bound of Planck. Due to the large error on its experimental determination, the helium mass fraction Y_p gives no significant bounds.
We develop the consequences of introducing a purely leptonic, lepton number violating non-standard interaction (NSI) and standard model neutrino mixing with a fourth, sterile neutrino in the analysis of short-baseline, neutrino experiments. We focus on the muon decay at rest (DAR) result from the Liquid Scintillation Neutrino Experiment (LSND) and the Karlsruhe and Rutherford Medium Energy Neutrino Experiment (KARMEN). We make a comprehensive analysis of lepton number violating, NSI effective operators and find nine that affect muon decay relevant to LSND results. Two of these preserve the standard model (SM) value 3/4 for the Michel rho and delta parameters and, overall, show favorable agreement with precision data and the electron anti-neutrino signal from LSND data. We display theoretical models that lead to these two effective operators. In the model we choose to apply to DAR data, both electron anti-neutrino appearance from muon anti-neutrino oscillation and electron anti-neutrino survival after production from NSI decay of the positive muon contribute to the expected signal. This is a unique feature of our scheme. We find a range of parameters where both experiments can be accommodated consistently with recent global, sterile neutrino fits to short baseline data. We comment on implications of the models for new physics searches at colliders and comment on further implications of the lepton number violating interactions plus sterile neutrino-standard model neutrino mixing.
Sterile neutrinos can affect the evolution of the universe, and thus using the cosmological observations can search for sterile neutrinos. In this work, we use the cosmic microwave background (CMB) anisotropy data from the Planck 2018 release, combin ed with the latest baryon acoustic oscillation (BAO), type Ia supernova (SN), and Hubble constant ($H_0$) data, to constrain the cosmological models with considering sterile neutrinos. In order to test the influences of the properties of dark energy on the constraint results of searching for sterile neutrinos, in addition to the $Lambda$ cold dark matter ($Lambda$CDM) model, we also consider the $w$CDM model and the holographic dark energy (HDE) model. We find that sterile neutrinos cannot be detected when the $H_0$ local measurement is not included in the data combination. When the $H_0$ measurement is included in the joint constraints, it is found that $Delta N_{rm eff}>0$ is detected at about 2.7$sigma$ level for the $Lambda$CDM model and at about 1--1.7$sigma$ level for the $w$CDM model. However, $m_{ u,{rm{sterile}}}^{rm{eff}}$ still cannot be well constrained and only upper limits can be given. In addition, we find that the HDE model is definitely ruled out by the current data. We also discuss the issue of the Hubble tension, and we conclude that involving sterile neutrinos in the cosmological models cannot truly resolve the Hubble tension.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا