ترغب بنشر مسار تعليمي؟ اضغط هنا

VLT Spectroscopy of RR Lyrae Stars in the Sagittarius Tidal Stream

141   0   0.0 ( 0 )
 نشر من قبل A. Katherina Vivas
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Sixteen RR Lyrae variables from the QUEST survey that lie in the leading arm of the tidal stream from the Sagittarius dSph galaxy have been observed spectroscopically to measure their radial velocities and metal abundances. The systemic velocities of 14 stars, which were determined by fitting a standard velocity curve to the individual measurements, have a sharply peaked distribution with a mean of 33 km/s and a standard deviation of only 25 km/s. The [Fe/H] distribution of these stars has a mean of -1.76 and a standard deviation of 0.22. These measurements are in good agreement with previous ones from smaller samples of stars. The mean metallicity is consistent with the age-metallicity relation that is observed in the main body of the Sgr dSph galaxy. The radial velocities and the distances from the Sun of these stars are compared with recent numerical simulations of the Sgr streams that assume different shapes for the dark matter halo. Models that assume a oblate halo do not fit the data as well as ones that assume a spherical or a prolate distribution. However, none of the fits are completely satisfactory. Every model fails to reproduce the long extent of the stream in right ascension (36 degr) that is seen in the region covered by the QUEST survey. Further modeling is required to see if this and the other mismatches between theory and observation can be removed by judicial choices for the model parameters or instead rule out a class of models.



قيم البحث

اقرأ أيضاً

We have measured radial velocities and metallicities of 16 RR Lyrae stars, from the QUEST survey, in the Sagittarius tidal stream at 50 kpc from the galactic center. The distribution of velocities is quite narrow (std dev=25 km/s) indicating that the structure is coherent also in velocity space. The mean heliocentric velocity in this part of the stream is 32 km/s. The mean metallicity of the RR Lyrae stars is [Fe/H]=-1.7. Both results are consistent with previous studies of red giant stars in this part of the stream. The velocities also agree with a theoretical model of the disruption of the Sagittarius galaxy.
86 - P. Ramos , C. Mateu , T. Antoja 2020
The Sagittarius stream is one of the best tools that we currently have to estimate the mass and shape of our Galaxy. However, assigning membership and obtaining the phase-space distribution of the stars that form the tails is quite challenging. Our g oal is to produce a catalogue of RR Lyrae stars of Sagittarius and obtain an empiric measurement of the trends along the stream in sky position, distance and tangential velocities. We generate two initial samples from the Gaia DR2 RR Lyrae catalogue: one, selecting only the stars within pm20deg of the orbital plane of Sagittarius (Strip) and the other, the result of applying the Pole Count Map (nGC3) algorithm. We then use the model-independent, deterministic method developed in this work to remove most of the contamination by detecting and isolating the stream in distance and proper motions. The output is two empiric catalogues: the Strip sample (higher-completeness, lower-purity) which contains 11 677 stars, and the nGC3 sample (higher-purity, lower-completeness) with 6 608 stars. We characterise the changes along the stream in all the available dimensions, the 5 astrometric ones plus the metallicity, covering more than 2pi rad in the sky and obtain new estimates for the apocentres and the mean [Fe/H] of the RR Lyrae population. Also, we show the first map of the two components of the tangential velocity, thanks to the combination of distances and proper motions. Finally, we detect the bifurcation in the leading arm and report no significant difference between the two branches, either in metallicity, kinematics or distance. We provide the largest sample of RR Lyrae candidates of Sagittarius, which can be used as an input for a spectroscopic follow-up or as a reference for the new generation of models of the stream through the interpolators in distance and velocity that we have constructed.
We present a comprehensive and precise description of the Sagittarius (Sgr) stellar streams 3D geometry as traced by its old stellar population. This analysis draws on the sample of ${sim}44,000$ RR Lyrae (RRab) stars from the Pan-STARRS1 (PS1) 3$pi$ survey (Hernitschek et al. 2016,Sesar et al. 2017b), which is ${sim}80%$ complete and ${sim}90%$ pure within 80~kpc, and extends to ${gtrsim} 120$~kpc with a distance precision of ${sim} 3%$. A projection of RR Lyrae stars within $|tilde{B}|_{odot}<9^circ$ of the Sgr streams orbital plane reveals the morphology of both the leading and the trailing arms at very high contrast, across much of the sky. In particular, the map traces the stream near-contiguously through the distant apocenters. We fit a simple model for the mean distance and line-of-sight depth of the Sgr stream as a function of the orbital plane angle $tilde{Lambda}_{odot}$, along with a power-law background-model for the field stars. This modeling results in estimates of the mean stream distance precise to ${sim}1%$ and it resolves the streams line-of-sight depth. These improved geometric constraints can serve as new constraints for dynamical stream models.
Stellar tidal streams provide an opportunity to study the motion and structure of the disrupting galaxy as well as the gravitational potential of its host. Streams around the Milky Way are especially promising as phase space positions of individual s tars will be measured by ongoing or upcoming surveys. Nevertheless, it remains a challenge to accurately assess distances to stars farther than 10 kpc from the Sun, where we have the poorest knowledge of the Galaxys mass distribution. To address this we present observations of 32 candidate RR Lyrae stars in the Orphan tidal stream taken as part of the Spitzer Merger History and Shape of the Galactic Halo (SMHASH) program. The extremely tight correlation between the periods, luminosities, and metallicities of RR Lyrae variable stars in the Spitzer IRAC $mathrm{3.6 mu m}$ band allows the determination of precise distances to individual stars; the median statistical distance uncertainty to each RR Lyrae star is $2.5%$. By fitting orbits in an example potential we obtain an upper limit on the mass of the Milky Way interior to 60 kpc of $mathrm{5.6_{-1.1}^{+1.2}times 10^{11} M_odot}$, bringing estimates based on the Orphan Stream in line with those using other tracers. The SMHASH data also resolve the stream in line--of--sight depth, allowing a new perspective on the internal structure of the disrupted dwarf galaxy. Comparing with N--body models we find that the progenitor had an initial dark halo mass of approximately $mathrm{3.2 times 10^{9} M_odot}$, placing the Orphan Streams progenitor amongst the classical dwarf spheroidals.
54 - Sonia Duffau 2005
Eighteen RR Lyrae variables (RRLs) that lie in the $12fh 4$ clump identified by the QUEST survey have been observed spectroscopically to measure their radial velocities and metal abundances. Ten blue horizontal branch (BHB) stars identified by the Sl oan Digital Sky Survey (SDSS) were added to this sample. Six of the 9 stars in the densest region of the clump have a mean radial velocity in the galactic rest frame ($V_{rm gsr}$) of 99.8 and $sigma$ = 17.3 ${rm km s}^{-1}$, which is slightly smaller than the average error of the measurements. The whole sample contains 8 RRLs and 5 BHB stars that have values of $V_{rm gsr}$ suggesting membership in this stream. For 7 of these RRLs, the measurements of [Fe/H], which have an internal precision of 0.08 dex, yield $<{rm [Fe/H]}> = -1.86$ and $sigma$ = 0.40. These values suggest that the stream is a tidally disrupted dwarf spheroidal galaxy of low luminosity. Photometry from the database of the SDSS indicates that this stream covers at least 106 deg$^2$ of the sky in the constellation Virgo. The name Virgo Stellar Stream is suggested.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا