ترغب بنشر مسار تعليمي؟ اضغط هنا

Candidate Type II Quasars from the SDSS: III. Spectropolarimetry Reveals Hidden Type I Nuclei

77   0   0.0 ( 0 )
 نشر من قبل Nadia L. Zakamska
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Nadia L. Zakamska




اسأل ChatGPT حول البحث

We have conducted spectropolarimetry of 12 type II (obscured) quasar candidates selected from the spectroscopic database of the Sloan Digital Sky Survey based on their emission line properties. Polarization was detected in all objects, with nine being highly polarized (> 3%) and with polarization reaching as high as 17% in two objects. Broad lines were detected in the polarized spectra of five objects. These observations prove beyond a reasonable doubt that the objects in our sample are indeed type II quasars, in that they harbor luminous UV-excess AGNs in their centers and that the direct view to the AGN is highly obscured. For three of the objects in this paper, we have obtained HST images in three bands. The HST observations, combined with the spectropolarimetry data, imply that scattering off material outside the obscuration plane is the dominant polarization mechanism. In all three objects the sizes of scattering regions are a few kpc. For one object, the extent of the scattering region, coupled with the characteristics of the polarized spectrum, argue strongly that dust scattering rather than electron scattering dominates the polarized light. Our observations are well-described by the basic orientation-based unification model of toroidal obscuration and off-plane scattering, implying that the model can be extended to include at least some high-luminosity AGNs.



قيم البحث

اقرأ أيضاً

118 - A. Ptak , N. Zakamska , M. Strauss 2005
We are carrying out sensitive X-ray observations with Chandra and XMM of type II quasars selected from the Sloan Digital Sky Survey based on their optical emission line properties. We present observations of four objects at redshifts 0.4 < z < 0.8 an d an analysis of the archival data for four additional objects in the same redshift range. Six of the eight were detected in X-rays; five of them have sufficient signal to derive spectral information. All of the detected sources have intrinsic luminosities L(2-10 keV) > 5 x 10^43 erg s^-1. The five with sufficient counts for spectral fitting show evidence for significant absorption (N_H >~ a few x 10^22 cm^-2). At least three of the objects likely have N_H > 10^23 cm^-2; some may be Compton-thick (N_H > 10^{24} cm^-2). In the five objects for which we could fit spectra, the slopes tend to be significantly flatter than is typically observed in AGN; it is possible that this is due either to reprocessing of the nuclear emission or to a line of sight that passes through patchy absorption.
Type II quasars are luminous AGNs whose central engines and broad-line regions are obscured by intervening material; such objects only recently have been discovered in appreciable numbers. We study the multiwavelength properties of 291 type II AGN ca ndidates (0.3 < z < 0.8) selected based on their optical emission line properties from the spectroscopic database of the Sloan Digital Sky Survey. This sample includes about 150 objects luminous enough to be classified as type II quasars. We matched the sample to the FIRST (20 cm), IRAS (12-100 micron), 2MASS (JHK_S) and RASS (0.1-2.4 keV) surveys. Roughly 10% of optically selected type II AGN candidates are radio-loud, comparable to the AGN population as a whole. About 40 objects are detected by IRAS at 60 micron and/or 100 micron, and the inferred mid/far-IR luminosities lie in the range nu L_nu=10^45-3x10^46 erg/sec. Average IR-to-[OIII]5007 ratios of objects in our sample are consistent with those of other AGNs. Objects from our sample are ten times less likely to have soft X-ray counterparts in RASS than type I AGNs with the same redshifts and [OIII]5007 luminosities. The few type II AGN candidates from our sample that are detected by RASS have harder X-ray spectra than those of type I AGNs. The multiwavelength properties of the type II AGN candidates from our sample are consistent with their interpretation as powerful obscured AGNs.
127 - Y. Li , W. Yuan , H. Y. Zhou 2014
We report the finding of an unobscured type II Active Galactic Nuclei (AGN) candidate, SDSS J012032.19-005501.9 at a relatively high redshift of 0.601,which shows a number of unusual properties. It varies significantly on timescales of years as typic al type I AGNs and marginally on timescales of weeks. The color-magnitude relation and the structure function are also consistent with that of type I AGNs, which imply that its variability likely originates from the black hole accretion system .However, no broad emission line is detected in the SDSS spectrum, and the upper limit of the equivalent width of the H$rm beta$ broad emission line is much less than that of type I AGNs. These properties suggest that SDSS J012032.19-005501.9 may be an unobscured quasar without broad emission lines intrinsically, namely an unobscured type II AGN or true type II AGN. Furthermore, its continuum luminosity is at least one order of magnitude fainter than the average value of thepast century expected from the [OIII] emission line. It indicates that SDSS J012032.19-005501.9 may be switching off. Additional possible scenarios to explain this intriguing source are also discussed. Future deep observations at multi-wavelengths are needed to reveal the nature of this peculiar and intriguing AGN.
Black hole (BH) mass of Type I active galactic nuclei (AGN) can be measured or estimated through either reverberation mapping (RM) or empirical $R-L$ relation, however, both of them suffer from uncertainties of the virial factor ($f_{rm BLR}$), thus limiting the measurement accuracy. In this letter, we make an effort to investigate $f_{rm BLR}$ through polarised spectra of the broad-line regions (BLR) arisen from electrons in the equatorial plane. Given the BLR composed of discrete clouds with Keplerian velocity around the central BH, we simulate a large number of spectra of total and polarised flux with wide ranges of parameters of the BLR model and equatorial scatters. We find that the $f_{rm BLR}$-distribution of polarised spectra is much narrower than that of total ones. This provides a way of n accurately estimating BH mass from single spectropolarimetric observations of type I AGN whose equatorial scatters are identified.
The coming era of large photometric wide-field surveys will increase the detection rate of supernovae by orders of magnitude. Such numbers will restrict spectroscopic follow-up in the vast majority of cases, and hence new methods based solely on phot ometric data must be developed. Here, we construct a complete Hubble diagram of Type II supernovae combining data from three different samples: the Carnegie Supernova Project-I, the Sloan Digital Sky Survey-II SN, and the Supernova Legacy Survey. Applying the Photometric Colour Method (PCM) to 73 Type II supernovae (SNe~II) with a redshift range of 0.01--0.5 and with no spectral information, we derive an intrinsic dispersion of 0.35 mag. A comparison with the Standard Candle Method (SCM) using 61 SNe~II is also performed and an intrinsic dispersion in the Hubble diagram of 0.27 mag is derived, i.e., 13% in distance uncertainties. Due to the lack of good statistics at higher redshifts for both methods, only weak constraints on the cosmological parameters are obtained. However, assuming a flat Universe and using the PCM, we derive a Universes matter density: $Omega_{m}$=0.32$^{+0.30}_{-0.21}$ providing a new independent evidence for dark energy at the level of two sigma.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا