ترغب بنشر مسار تعليمي؟ اضغط هنا

The narrow-line quasar NAB 0205+024 observed with XMM-Newton

106   0   0.0 ( 0 )
 نشر من قبل Luigi Gallo
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف L. C. Gallo




اسأل ChatGPT حول البحث

The XMM-Newton observation of the narrow-line quasar NAB 0205+024 reveals three striking differences since it was last observed in the X-rays with ASCA. Firstly, the 2-10 keV power-law is notably steeper. Secondly, a hard X-ray flare is detected, very similar to that seen in I Zw 1. Thirdly, a strong and broad emission feature is detected with the bulk of its emission redward of 6.4 keV, and extending down to ~5 keV in the rest frame. The most likely explanation for the broad feature is neutral iron emission emitted from a narrow annulus of an accretion disc close to the black hole. The hard X-ray flare could be the mechanism which illuminates this region of the disc, allowing for the emission line to be detected. The combination of effects can be understood in terms of the `thundercloud model proposed by Merloni & Fabian.



قيم البحث

اقرأ أيضاً

92 - J.N. Reeves 2000
XMM-Newton observations of the low luminosity, radio-quiet quasar Markarian 205 have revealed a unique iron K emission line profile. In marked contrast to the broad and redshifted iron K line commonly seen in ASCA observations of Seyfert 1 galaxies, we find that a substantial amount of the line flux in Mrk 205 occurs above the neutral line energy of 6.4 keV. Furthermore, we find that the iron line emission has two distinct components, a narrow, unresolved neutral line at 6.4 keV and a broadened line centred at 6.7 keV. We suggest that the most likely origin of the 6.7 keV line is from X-ray reflection off the surface of a highly ionised accretion disk, whilst the 6.4 keV component may arise from neutral matter distant from the black hole, quite possibly in the putative molecular torus. Overall this observation underlines the potential of XMM-Newton for using the iron K line as a diagnostic of matter in the innermost regions of AGN.
136 - E. Belsole 2005
We present results from the XMM-Newton observations of our ongoing program on merging clusters. To date three clusters have been observed, covering the temporal sequence from early to late stage mergers: A1750, A2065 and A3921. Using spatially-resolv ed spectroscopy of discrete regions, hardness ratio and temperature maps, we show that all three clusters display a complex temperature structure. In the case of A1750, a double cluster, we argue that the observed temperature structure is not only related to the ongoing merger but also to previous merger events. A2065 seems an excellent example of a `compact merger, i.e. when the centres of the two clusters have just started to interact, producing a shock in the ICM. Using comparisons with numerical simulations and complementary optical data, the highly complex temperature structure evident in A3921 is interpreted as an off-axis merger between two unequal mass components. These results illustrate the complex physics of merger events. The relaxation time can be larger than the typical time between merger events, so that the present day morphology of clusters depends not only on on-going interaction but also on the more ancient formation history.
294 - A. L. Longinotti 2013
We present the discovery of an outflowing ionized wind in the Seyfert 1 Galaxy Mrk 335. Despite having been extensively observed by most of the largest X-ray observatories in the last decade, this bright source was not known to host warm absorber gas until recent XMM-Newton observations in combination with a long-term Swift monitoring program have shown extreme flux and spectral variability. High resolution spectra obtained by the XMM-Newton RGS detector reveal that the wind consists of three distinct ionization components, all outflowing at a velocity of 5000 km/s. This wind is clearly revealed when the source is observed at an intermediate flux state (2-5e-12 ergs cm^-2 s^-1). The analysis of multi-epoch RGS spectra allowed us to compare the absorber properties at three very different flux states of the source. No correlation between the warm absorber variability and the X-ray flux has been determined. The two higher ionization components of the gas may be consistent with photoionization equilibrium, but we can exclude this for the only ionization component that is consistently present in all flux states (log(xi)~1.8). We have included archival, non-simultaneous UV data from HST (FOS, STIS, COS) with the aim of searching for any signature of absorption in this source that so far was known for being absorption-free in the UV band. In the COS spectra obtained a few months after the X-ray observations we found broad absorption in CIV lines intrinsic to the AGN and blueshifted by a velocity roughly comparable to the X-ray outflow. The global behavior of the gas in both bands can be explained by variation of the covering factor and/or column density, possibly due to transverse motion of absorbing clouds moving out of the line of sight at Broad Line Region scale.
118 - A. Hands , R. Warwick , M. Watson 2002
In A0-1 we proposed an ambitious long-term survey of selected regions of our Galaxy (the XGPS survey) using the EPIC CCD cameras on XMM-Newton. The first phase of the programme, which aims to survey a strip of the Galactic Plane in the Scutum region, is currently underway. Here we report on the preliminary results from the first 15 survey pointings. We show that the XGPS survey strategy of fairly shallow (5-10 ks) exposures but wide-angle coverage is well tuned to the goal of providing a large catalogue of predominantly Galactic sources at relatively faint X-ray fluxes in the hard 2-6 keV band.
92 - P. T. OBrien 2001
We present XMM-Newton observations of Mrk 359, the first Narrow Line Seyfert 1 galaxy discovered. Even among NLS1s, Mrk 359 is an extreme case with extraordinarily narrow optical emission lines. The XMM-Newton data show that Mrk 359 has a significant soft X-ray excess which displays only weak absorption and emission features. The (2-10) keV continuum, including reflection, is flatter than the typical NLS1, with Gamma approximately 1.84. A strong emission line of equivalent width approximately 200 eV is also observed, centred near 6.4 keV. We fit this emission with two line components of approximately equal strength: a broad iron-line from an accretion disc and a narrow, unresolved core. The unresolved line core has an equivalent width of approximately 120 eV and is consistent with fluorescence from neutral iron in distant reprocessing gas, possibly in the form of a `molecular torus. Comparison of the narrow-line strengths in Mrk 359 and other low-moderate luminosity Seyfert 1 galaxies with those in QSOs suggests that the solid angle subtended by the distant reprocessing gas decreases with increasing AGN luminosity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا