ترغب بنشر مسار تعليمي؟ اضغط هنا

Reconsidering the origin of the 21 micron feature: Oxides in carbon-rich PPNe?

312   0   0.0 ( 0 )
 نشر من قبل Anja C. Andersen
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The origin of the so-called 21 micron feature which is especially prominent in the spectra of some carbon-rich protoplanetary nebulae (PPNe}) is the matter of a lively debate. A large number of potential band carriers have been presented and discarded within the past decade. The present paper gives an overview of the problems related to the hitherto proposed feature identifications, including the recently suggested candidate carrier silicon carbide. We also discuss the case for spectroscopically promising oxides. SiC is shown to produce a strong resonance band at 20-21 micron if coated by a layer of silicon dioxide. At low temperatures, core-mantle particles composed of SiC and amorphous SiO$_2$ indeed have their strongest spectral signature at a position of 20.1 micron, which coincides with the position of the 21 micron emission band. The optical constants of another candidate carrier that has been relatively neglected so far -- iron monoxide -- are proven to permit a fairly accurate reproduction of the 21 micron feature profile as well, especially when low-temperature measurements of the infrared properties of FeO are taken into account. As candidate carrier of the 21 micron emission band, FeO has the advantage of being stable against further oxidation and reduction only in a narrow range of chemical and physical conditions, coinciding with the fact that the feature, too, is detected in a small group of objects only. However, it is unclear how FeO should form or survive particularly in carbon-rich PPNe.



قيم البحث

اقرأ أيضاً

The 3.3 $mu$m unidentified infrared emission feature is commonly attributed to C-H stretching band of aromatic molecules. Astronomical observations have shown that this feature is composed of two separate bands at 3.28 and 3.30 $mu$m and the origin o f these two bands is unclear. In this paper, we perform vibrational analyses based on quantum mechanical calculations of 153 organic molecules, including both pure aromatic molecules and molecules with mixed aromatic/olefinic/aliphatic hydridizations. We find that many of the C-H stretching vibrational modes in polycyclic aromatic hydrocarbon (PAH) molecules are coupled. Even considering the un-coupled modes only, the correlation between the band intensity ratios and the structure of the PAH molecule is not observed and the 3.28 and 3.30 $mu$m features cannot be directly interpreted in the PAH model. Based on these results, the possible aromatic, olefinic and aliphatic origins of the 3.3 $mu$m feature are discussed. We suggest that the 3.28 $mu$m feature is assigned to aromatic C-H stretch whereas the 3.30 $mu$m feature is olefinic. From the ratio of these two features, the relative olefinic to aromatic content of the carrier can be determined.
103 - B.W.Jiang , 2005
The mysterious 21mu emission feature seen in 12 proto-planetary nebulae (PPNe) remains unidentified since its first detection in 1989. Over a dozen of candidate materials have been proposed within the past decade, but none of them has received genera l acceptance. Very recently, silicon carbide (SiC) grains with impurities were suggested to be the carrier of this enigmatic feature, based on recent laboratory data that doped SiC grains exhibit a resonance at ~21mu. This proposal gains strength from the fact that SiC is a common dust species in carbon-rich circumstellar envelopes. However, SiC dust has a strong vibrational band at ~11.3mu. We show in this Letter that in order to be consistent with the observed flux ratios of the 11.3mu feature to the 21mu feature, the band strength of the 21mu resonance has to be very strong, too strong to be consistent with current laboratory measurements. But this does not yet readily rule out the SiC hypothesis since recent experimental results have demonstrated that the 21mu resonance of doped SiC becomes stronger as the C impurity increases. Further laboratory measurements of SiC dust with high fractions of C impurity are urgently needed to test the hypothesis of SiC as the carrier of the 21mu feature.
Observations with the Spitzer Space Telescope have revealed a population of red-sequence galaxies with a significant excess in their 24-micron emission compared to what is expected from an old stellar population. We identify 900 red galaxies with 0.1 5<z<0.3 from the AGN and Galaxy Evolution Survey (AGES) selected from the NOAO Deep Wide-Field Survey Bootes field. Using Spitzer/MIPS, we classify 89 (~10%) with 24-micron infrared excess (f24>0.3 mJy). We determine the prevalence of AGN and star-formation activity in all the AGES galaxies using optical line diagnostics and mid-IR color-color criteria. Using the IRAC color-color diagram from the IRAC Shallow Survey, we find that 64% of the 24-micron excess red galaxies are likely to have strong PAH emission features in the 8-micron IRAC band. This fraction is significantly larger than the 5% of red galaxies with f24<0.3 mJy that are estimated to have strong PAH emission, suggesting that the infrared emission is largely due to star-formation processes. Only 15% of the 24-micron excess red galaxies have optical line diagnostics characteristic of star-formation (64% are classified as AGN and 21% are unclassifiable). The difference between the optical and infrared results suggest that both AGN and star-formation activity is occurring simultaneously in many of the 24-micron excess red galaxies. These results should serve as a warning to studies that exclusively use optical line diagnostics to determine the dominant emission mechanism in the infrared and other bands. We find that ~40% of the 24-micron excess red galaxies are edge-on spiral galaxies with high optical extinctions. The remaining sources are likely to be red galaxies whose 24-micron emission comes from a combination of obscured AGN and star-formation activity.
60 - J. Rho 2017
We present infrared (IR) and submillimeter observations of the Crab-like supernova remnant (SNR) G54.1+0.3 including 350 micron (SHARC-II), 870 micron (LABOCA), 70, 100, 160, 250, 350, 500 micron (Herschel) and 3-40 micron (Spitzer). We detect dust f eatures at 9, 11 and 21 micron and a long wavelength continuum dust component. The 21 micron dust coincides with [Ar II] ejecta emission, and the feature is remarkably similar to that in Cas A. The IRAC 8 micron image including Ar ejecta is distributed in a shell-like morphology which is coincident with dust features, suggesting that dust has formed in the ejecta. We create a cold dust map that shows excess emission in the northwestern shell. We fit the spectral energy distribution of the SNR using the continuous distributions of ellipsoidal (CDE) grain model of pre-solar grain SiO2 that reproduces the 21 and 9 micron dust features and discuss grains of SiC and PAH that may be responsible for the 10-13 micron dust features. To reproduce the long-wavelength continuum, we explore models consisting of different grains including Mg2SiO4, MgSiO3, Al2O3, FeS, carbon, and Fe3O4. We tested a model with a temperature-dependent silicate absorption coefficient. We detect cold dust (27-44 K) in the remnant, making this the fourth such SNR with freshly-formed dust. The total dust mass in the SNR ranges from 0.08-0.9 Msun depending on the grain composition, which is comparable to predicted masses from theoretical models. Our estimated dust masses are consistent with the idea that SNe are a significant source of dust in the early Universe.
There are two dominant and contrasting classes of origin of life scenarios: those predicting that life emerged in submarine hydrothermal systems, where chemical disequilibrium can provide an energy source for nascent life; and those predicting that l ife emerged within subaerial environments, where UV catalysis of reactions may occur to form the building blocks of life. Here, we describe a prebiotically plausible environment that draws on the strengths of both scenarios: surface hydrothermal vents. We show how key feedstock molecules for prebiotic chemistry can be produced in abundance in shallow and surficial hydrothermal systems. We calculate the chemistry of volcanic gases feeding these vents over a range of pressures and basalt C/N/O contents. If ultra-reducing carbon-rich nitrogen-rich gases interact with subsurface water at a volcanic vent they result in 1 mM to 1 M concentrations of diacetylene, acetylene, cyanoacetylene, hydrogen cyanide, bisulfite, hydrogen sulfide and soluble iron in vent water. One key feedstock molecule, cyanamide, is not formed in significant quantities within this scenario, suggesting that it may need to be delivered exogenously, or formed from hydrogen cyanide either via organometallic compounds, or by some as yet-unknown chemical synthesis. Given the likely ubiquity of surface hydrothermal vents on young, hot, terrestrial planets, these results identify a prebiotically plausible local geochemical environment, which is also amenable to future lab-based simulation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا