ﻻ يوجد ملخص باللغة العربية
We present a spectroscopic deprojection analysis of a sample of ten relaxed galaxy clusters. We use an empirical F-test derived from a set of Markov Chain Monte Carlo simulations to determine if the core plasma in each cluster could contain multiple phases. We derive non-parametric baryon density and temperature profiles, and use these to construct total gravitating mass profiles. We compare these profiles with the standard halo parameterizations. We find central density slopes roughly consistent with the predictions of LCDM: $-1 lesssim dlog(rho)/dlog(r) lesssim -2$. We constrain the core size of each cluster and, using the results of cosmological simulations as a calibrator, place an upper limit of ~0.1 cm^2/g = 0.2 b(GeV/c^2)^{-1} (99% confidence) on the dark matter particle self-interaction cross section.
We present Chandra observations of EMSS 1358+6245, a relaxed cooling flow cluster of galaxies at z = 0.328. We employ a new deprojection technique to construct temperature, gas, and dark matter profiles. We confirm the presence of cool gas in the clu
We present the first simulated galaxy clusters (M_200 > 10^14 Msun) with both self-interacting dark matter (SIDM) and baryonic physics. They exhibit a greater diversity in both dark matter and stellar density profiles than their counterparts in simul
Determining the structure of galaxy clusters is essential for an understanding of large scale structure in the universe, and may hold important clues to the identity and nature of dark matter particles. Moreover, the core dark matter distribution may
Galaxy cluster mass distributions offer an important test of the cold dark matter picture of structure formation, and may even contain clues about the nature of dark matter. X-ray imaging spectroscopy of relaxed systems can map cluster dark matter di
The short distance behavior of dark matter (DM) at galaxy scales exhibits several features not explained by the typical cold dark matter (CDM) with velocity-independent cross-section. We discuss a particle physics model with a hidden sector interacti