ﻻ يوجد ملخص باللغة العربية
We investigate the cold and warm dust properties during galaxy interactions using a merging galaxy sample ordered into a chronological sequence from pre- to post-mergers. Our sample comprises a total of 29 merging systems selected to have far-infrared and sub-millimeter observations. The sub-millimeter data are mainly culled from the literature while for 5 galaxies (NGC 3597, NGC 3690, NGC 6090, NGC 6670 and NGC 7252) the sub-millimeter observations are presented here for the first time. We use the 100-to-850 micron flux density ratio, f_{100}/f_{850}, as a proxy to the mass fraction of the warm and the cold dust in these systems. We find evidence for an increase in f_{100}/f_{850} along the merging sequence from early to advanced mergers and interpret this trend as an increase of the warm relative to the cold dust mass. We argue that the two key parameters affecting the f_{100}/f_{850} flux ratio is the star-formation rate and the dust content of individual systems relative to the stars. Using a sophisticated model for the absorption and re-emission of the stellar UV radiation by dust we show that these parameters can indeed explain both the increase and the observed scatter in the f_{100}/f_{850} along the merging galaxy sequence. We also discuss our results under the hypothesis that elliptical galaxies are formed via disc galaxy mergers.
We investigate the cold and warm dust properties during galaxy interactions using a merging galaxy sample ordered into a chronological sequence from pre- to post-mergers. Our sample comprises a total of 29 merging systems selected to have far-infrare
We present new results from the SCUBA Local Universe Galaxy Survey (SLUGS), the first large systematic submillimetre survey of the local Universe. Since our initial survey of a sample of 104 IRAS-selected galaxies we have now completed a survey of a
Data from the Herschel Space Observatory have revealed an unusual elliptical galaxy, NGC 4125, which has strong and extended submillimeter emission from cold dust but only very strict upper limits to its CO and HI emission. Depending on the dust emis
A warm/hot dust component (at temperature $>$ 300K) has been detected around $sim$ 20% of stars. This component is called exozodiacal dust as it presents similarities with the zodiacal dust detected in our Solar System, even though its physical prope
We use a pair of high resolution N-body simulations implementing two dark matter models, namely the standard cold dark matter (CDM) cosmogony and a warm dark matter (WDM) alternative where the dark matter particle is a 1.5keV thermal relic. We combin