ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing Colliding Wind Binaries with High-Resolution X-ray Spectra

104   0   0.0 ( 0 )
 نشر من قبل David B. Henley
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف D.B. Henley




اسأل ChatGPT حول البحث

X-ray line profiles represent a new way of studying the winds of massive stars. In particular, they enable us to probe in detail the wind-wind collision in colliding wind binaries, providing new insights into the structure and dynamics of the X-ray-emitting regions. We present the key results of new analyses of high-resolution Chandra X-ray spectra of two important colliding wind systems, Gamma Velorum and WR140. The lines of Gamma Vel are essentially unshifted from their rest wavelengths, which we suggest is evidence of a wide shock opening angle, indicative of sudden radiative braking. The widths of the lines of WR140 are correlated with ionization potential, implying non-equilibrium ionization. The implications of these results for the radio emission from these systems are discussed, as are some of the future directions for X-ray line profile modelling of colliding wind binaries.

قيم البحث

اقرأ أيضاً

We have compiled a list of 36 O+O and 89 Wolf-Rayet binary candidates in the Milky Way and Magellanic clouds detected with the Chandra, XMM-Newton and ROSAT satellites to probe the connection between their X-ray properties and their system characteri stics. Of the WR binaries with published parameters, all but two have kT > 0.9 keV. The most X-ray luminous WR binaries are typically very long period systems. The WR binaries show a nearly four-order of magnitude spread in X-ray luminosity, even among among systems with very similar WR primaries. Among the O+O binaries, short-period systems generally have soft X-ray spectra and longer period systems show harder X-ray spectra, again with a large spread in LX/Lbol.
We present theoretical X-ray line profiles from a range of model colliding wind systems. In particular, we investigate the effects of varying the stellar mass-loss rates, the wind speeds, and the viewing orientation. We find that a wide range of theo retical line profile shapes is possible, varying with orbital inclination and phase. At or near conjunction, the lines have approximately Gaussian profiles, with small widths (HWHM ~ 0.1 v_infty) and definite blue- or redshifts (depending on whether the star with the weaker wind is in front or behind). When the system is viewed at quadrature, the lines are generally much broader (HWHM ~ v_infty), flat-topped and unshifted. Local absorption can have a major effect on the observed profiles - in systems with mass-loss rates of a few times 10^{-6} Msol/yr the lower energy lines (E <~ 1 kev) are particularly affected. This generally results in blueward-skewed profiles, especially when the system is viewed through the dense wind of the primary. The orbital variation of the line widths and shifts is reduced in a low inclination binary. The extreme case is a binary with i = 0 degrees, for which we would expect no line profile variation.
The dynamics of colliding wind binary systems and conditions for efficient particle acceleration therein have attracted multiple numerical studies in the recent years. These numerical models seek an explanation of the thermal and non-thermal emission of these systems as seen by observations. In the non-thermal regime, radio and X-ray emission is observed for several of these colliding-wind binaries, while gamma-ray emission has so far only been found in $eta$ Carinae and possibly in WR 11. Energetic electrons are deemed responsible for a large fraction of the observed high-energy photons in these systems. Only in the gamma-ray regime there might be, depending on the properties of the stars, a significant contribution of emission from neutral pion decay. Thus, studying the emission from colliding-wind binaries requires detailed models of the acceleration and propagation of energetic electrons. This in turn requires a detailed understanding of the magnetic field, which will not only affect the energy losses of the electrons but in case of synchrotron emission also the directional dependence of the emissivity. In this study we investigate magnetohydrodynamic simulations of different colliding wind binary systems with magnetic fields that are strong enough to have a significant effect on the winds. Such strong fields require a detailed treatment of the near-star wind acceleration zone. We show the implementation of such simulations and discuss results that demonstrate the effect of the magnetic field on the structure of the wind collision region.
85 - Shai Kaspi 2004
Past X-ray observations by ASCA suggest that warm absorbers (O VII and O VIII edges) are apparently rare in high luminosity AGNs (quasars) while they are more common in low luminosity AGNs (Seyferts). However, this could be a selection effect if high luminosity AGNs have mostly narrow absorption lines (with no strong bound free edges), which escaped detection by the low resolution of ASCA. To check this hypothesis we are studying the high-resolution X-ray spectra of quasars from grating spectrometers on board Chandra and XMM-Newton in search for absorption lines. In this contribution we present spectra of three quasars. The spectra show narrow (several hundred km/s) absorption and emission X-ray lines from H-like and He-like ions of O, Ne, Mg, and other abundant elements. We also detect absorption from iron L-shell lines and iron M-shell unresolved transition array. We present the analysis of MR2251-178 where we find that at least two, and probably three, distinct warm absorbers are needed to explain the high resolution spectrum of this object. We re-analyze the high-resolution X-ray spectrum of PG1211+143 and suggest that an outflow velocity of about 3000 km/s provides an adequate explanation to these data. We also present preliminary results form the Chandra/HETGS observation of the quasar 4C74.26.
An increasing number of early-type (O and Wolf-Rayet) colliding wind binaries (CWBs) is known to accelerate particles up to relativistic energies. In this context, non-thermal emission processes such as inverse Compton (IC) scattering are expected to produce a high energy spectrum, in addition to the strong thermal emission from the shock-heated plasma. SIMBOL-X will be the ideal observatory to investigate the hard X-ray spectrum (above 10 keV) of these systems, i.e. where it is no longer dominated by the thermal emission. Such observations are strongly needed to constrain the models aimed at understanding the physics of particle acceleration in CWB. Such systems are important laboratories for investigating the underlying physics of particle acceleration at high Mach number shocks, and probe a different region of parameter space than studies of supernova remnants.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا