ﻻ يوجد ملخص باللغة العربية
The goal of the Orbiting Wide-field Light-collectors (OWL) mission is to study the origin and physics of the highest energy particles known in nature, the ultrahigh energy cosmic rays (UHECRs). The OWL mission consists of telescopes with UV sensitive cameras on two satellites operating in tandem to view in stereo the development of the giant particle showers induced in the Earths atmosphere by UHECRs. This paper discusses the characteristics of the OWL mission.
Graphical User Interface (GUI) provides a visual bridge between a software application and end users, through which they can interact with each other. With the development of technology and aesthetics, the visual effects of the GUI are more and more
The apparent lack of suitable astrophysical sources for cosmic rays with E > 10^{19.7} eV (UHECRs) is the GZK Paradox. We argue that whatever mechanism produces them must also account for events down to ~10^{18.7} eV, including their isotropy and spe
The ESA Gaia mission will provide a multi-epoch database for a billion of objects, including variable objects that comprise stars, active galactic nuclei and asteroids. We highlight a few of Gaias properties that will benefit the study of variable ob
How did the universe evolve? The fine angular scale (l>1000) temperature and polarization anisotropies in the CMB are a Rosetta stone for understanding the evolution of the universe. Through detailed measurements one may address everything from the p
This work describes a full Bayesian analysis of the Nearby Universe as traced by galaxies of the 2M++ survey. The analysis is run in two sequential steps. The first step self-consistently derives the luminosity dependent galaxy biases, the power-spec